

Life Cycle Assessment of Deinked and Virgin Pulp FINAL

> Prepared for: National Geographic Washington DC

Prepared by: ENVIRON International Corporation Denver, CO

Date: November 2012

Project Number: 3224568B



16 18

# Contents

| 1      | Introduction                                                                         | 1          |
|--------|--------------------------------------------------------------------------------------|------------|
| 1.1    | Goals and Objectives                                                                 | 1          |
| 1.2    | Methodology: Life Cycle Assessment                                                   | 2          |
| 1.3    | Report Organization                                                                  | 2          |
| 2      | Scope                                                                                | 3          |
| 2.1    | System Description & Study boundaries                                                | 3          |
| 2.2    | Specific Products Analyzed (Functional Unit)                                         | 5          |
| 2.3    | Assessment Criteria                                                                  | 6          |
| 2.3.1  | Impact Categories                                                                    | 6          |
| 2.3.2  | Allocation Procedures                                                                | 7          |
| 2.3.3  | Data Requirements                                                                    | 7          |
| 3      | Quantifying Environmental Impacts: Life Cycle Impact Assessment                      | 8          |
| 3.1    | Translating Data (Life Cycle Inventory) into Life Cycle Environmental Impacts        | 8          |
| 3.2    | Environmental Impact Results                                                         | 10         |
| 3.2.1  | Relative Impact of Deinked vs. Virgin Pulp                                           | 10         |
| 3.2.2  | Key Life Cycle Stages: Contribution Analysis                                         | 12         |
| 4      | Quantifying the Impact of Variability and Assumptions: Sensitivity Analysis          | 18         |
| 4.1    | Scenario 1: Variations in Total Pulp Production Energy                               | 19         |
| 4.2    | Scenario 2: Variations in Pulp Production Energy Fuel Mix                            | 22         |
| 4.3    | Scenario 3: Variations in Impact Characterization Method                             | 25         |
| 4.4    | Scenario 4: Varying Assumptions Regarding Recycling Allocation                       | 27         |
| 5      | Input and Outputs: Life Cycle Inventory                                              | 30         |
| 5.1    | Data Sources Overview                                                                | 30         |
| 5.2    | Inputs and Outputs Associated with Pulp Processes                                    | 32         |
| 5.3    | "Best Available" Data Sources Used in the Analysis                                   | 38         |
| 5.4    | Significant Inventory Characterization Substances: Contribution Analysis             | 42         |
| 5.5    | Data Enhancement Opportunities                                                       | 45         |
| 6      | Summary and Conclusions- Interpretation                                              | 46         |
| List o | f Tables                                                                             |            |
| Table  | 1: Stakeholder Involvement                                                           | 2          |
| Table  | 2: Impact categories included in the analysis                                        | 6          |
| Table  | 3: Impact categories and impact characterization methods                             | 9          |
| Table  | 4: Deinked and Displaced Virgin (50% kraft/50% mechanical) pulp impacts per kilogram | (cradle to |
| paper  | mill)                                                                                | 11         |
| Table  | 5: Deinked Pulp Significant Life Cycle Stage Contributing Factors                    | 14         |

Table 6: Kraft Pulp Significant Life Cycle Stage Contributors

| Table 7: Mechanical Pulp Significant Life Cycle Stage Contributors |  |
|--------------------------------------------------------------------|--|
|--------------------------------------------------------------------|--|

| Table 8: Range of Pulp Production Energy values by Pulp Type (MJ per MT)                    | 20 |
|---------------------------------------------------------------------------------------------|----|
| Table 9: Range of relative impacts based on variations in total pulp production energy      | 21 |
| Table 10: Deinked Pulp Impacts Based on Fuel Type                                           | 22 |
| Table 11: Range of relative impacts based on variations in input fuels                      | 24 |
| Table 12: Range of relative impacts based on variations in recycling allocation assumptions | 29 |
| Table 13: Summary of Secondary Data Sources                                                 | 31 |
| Table 14: Data Sources Used in the Deinked Pulp Analysis                                    | 38 |
| Table 15: Data Sources Used in the Virgin Pulp Analysis                                     | 40 |
| Table 16: Data Enhancement Opportunities                                                    | 45 |
| Table 17: Relative impact ranges for deinked, kraft and mechanical pulp                     | 47 |

### List of Figures

| Figure 1: Decision flowchart illustrating NGS potential actions                                          | 1 |
|----------------------------------------------------------------------------------------------------------|---|
| Figure 2: Report Organization                                                                            | 3 |
| Figure 3 : System Boundaries/Process Overview                                                            | 5 |
| Figure 4 : Inventory Translated to Environmental Impacts                                                 | 9 |
| Figure 5 : Relative impact of Deinked vs. Virgin (50% kraft/50% mechanical) pulp1                        | 1 |
| Figure 6 : Impact by Lifecycle stage- Deinked Pulp1                                                      | 3 |
| Figure 7 : Impact by Lifecycle stage- Kraft Pulp1                                                        | 5 |
| Figure 8 : Impact by Lifecycle stage- Mechanical Pulp1                                                   | 7 |
| Figure 9 : Variation in Relative Impact based on a range of Total energy per kg/pulp24                   | 0 |
| Figure 10 : Variation of Relative Impact based on a Range of Input Fuels                                 | 3 |
| Figure 11 : Baseline method (top) vs. IMPACT 2002+ and ReCipe (bottom)20                                 | 6 |
| Figure 12: Deinked Pulp vs. Displaced Virgin Pulp: Recycling allocation and credits24                    | 8 |
| Figure 13: Deinked vs. Kraft vs. Mechanical Pulp: Recycling allocation and credits24                     | 8 |
| Figure 14 : Deinked Pulp Inputs and Outputs by Unit Process: Fiber Acquisition                           | 3 |
| Figure 15 : Deinked Pulp Inputs and Outputs by Unit Process: Pulp Production and Transport to Mill 34    | 4 |
| Figure 16 : Virgin Pulp Inputs and Outputs by Unit Process: Fiber Acquisition                            | 5 |
| Figure 17 : Virgin Pulp Inputs and Outputs by Unit Process: Bleached Kraft Pulp Manufacturing            | 6 |
| Figure 18 : Virgin Pulp Inputs and Outputs by Unit Process: Bleached Mechanical Pulp Manufacturing3      | 7 |
| Figure 19 : Significant Inventory Characterization Parameters associated with the Preliminary Life Cycle |   |
| Inventory                                                                                                | 4 |
| Figure 20 : Summary of relative impacts for deinked, kraft and mechanical pulp                           | 8 |

#### Appendix A: Basecase Impact Results Applying Impact 2002+ and ReCiPe Characterization Factors

Appendix B: Life Cycle Inventory Unit Process Sources

# 1 Introduction

#### 1.1 Goals and Objectives

The National Geographic Society (NGS) commissioned ENVIRON to conduct a life cycle assessment (LCA) to evaluate the relative impacts of deinked pulp derived from waste paper versus the impacts of virgin pulp produced from virgin wood sources that would be displaced by the use of the deinked pulp. The objectives of the study were to:

- Identify and quantify the key factors contributing to the relative environmental impacts of deinked and virgin pulp, and to
- Inform NGS actions and decision making.

As illustrated in Figure 1, the results of this study can be used to support whether or not NGS considers the availability and cost of using recovered fiber in its magazine. This study does not presume that a limited supply of fiber exists; an additional "supply" study is underway to investigate the availability of recycled high grade paper for Magazine use. Based on stakeholder group feedback, this study focused on evaluating the relative impact of recovered versus virgin fiber in a magazine in isolation. In addition, we examined the relative impact of displacing mechanical or kraft pulp to inform a comparison of alternate products.





ENVIRON conducted the LCA study based on significant input from a stakeholders group and technical advisors. Stakeholders provided input on each phase of the project, as illustrated in Table 1. The stakeholders involved included NGS, Green America, Natural Resources Defense Council (NRDC) and Natural Resource Council of Maine (NRCM). We also obtained input from

technical advisors from groups including the World Resource Institute (WRI), National Council for Air and Stream Improvement (NCASI) and pulp and paper producers to provide subject matter expertise. ENVIRON was responsible for facilitating the team meetings, preparing draft materials for review, incorporating feedback, and performing the Life Cycle Assessment calculations.

#### Table 1: Stakeholder Involvement

| Task                     | Stakeholder Involvement                                                      |
|--------------------------|------------------------------------------------------------------------------|
| LCA Design               | Design meeting<br>Draft study design review and webinar                      |
| Process Map              | Review and discuss process map components                                    |
| Data Map                 | Identify potential data sources<br>Review data sources, approaches, and gaps |
| Sensitivity Analysis     | Discuss parameters to be included in sensitivity analysis                    |
| LCA Analysis &<br>Report | Provide study activity data<br>Review and comment on report                  |

#### 1.2 Methodology: Life Cycle Assessment

Life cycle assessment is a standardized method for examining the environmental and human health impacts associated with a product throughout its lifetime, including the general categories of raw material extraction, transportation, manufacturing, use and disposal. To provide consistency, comparability, and transparency to the analysis, ENVIRON followed the standards outlined in ISO 14040 – "Life cycle Assessment – Principles and framework"<sup>1</sup> and ISO 14044 – "Life cycle assessment – Requirements and guidelines" <sup>2</sup> to complete the LCA. As outlined in the ISO standards, an LCA consists of four phases:

- 1. Goal and scope definition: define the objectives and associated study framework and boundaries;
- 2. Life cycle inventory: create an inventory of the mass and energy inputs and outputs from processes associated with the product system processes (data collection phase);
- 3. Life cycle impact assessment: evaluation of the relative environmental significance (e.g., global warming potential) associated with the inputs and outputs; and,
- 4. Interpretation: summary of the conclusions in relation to the objectives of the study

#### **1.3 Report Organization**

This report is organized into the following sections that address the four elements above, as illustrated in Figure 2.

<sup>&</sup>lt;sup>1</sup> International Standards Organization (ISO) 14040:2006, (2006). Environmental management- Life Cycle Assessment – Principals and framework, Second edition.

<sup>&</sup>lt;sup>2</sup> International Standards Organization ISO 14044 (2006). Environmental management- Life cycle assessment-requirements and guidelines.



#### Figure 2: Report Organization

Section 1 discusses the study goal. In Section 2, we review the scope of the study to establish system boundaries and discuss the assumptions of the life cycle assessment. Next we present the results of the study in Sections 3, which quantifies the relative environmental impact of deinked versus displaced pulp and Section 4, which illustrates the range of impacts that result from varying key model inputs, such as total energy used. Section 5 presents the underlying details on the mass and energy inputs and outputs that contribute to the environmental impacts, and discusses the data utilized to represent these flows. Section 6 summarizes the results and presents study conclusions.

# 2 Scope

In this section, we discuss the scope of the study. The scope of the study defines the system boundary and specific products to be studied, which then determines data collection and analysis needs. In addition, the scope establishes the impact categories evaluated, allocation procedures applied, and data requirements.

#### 2.1 System Description & Study boundaries

The objective of this study is to evaluate the relative impacts of deinked pulp derived from waste paper versus the impacts of virgin pulp produced from virgin wood sources. Specifically we are to consider the virgin pulp that would be displaced by the use of deinked pulp in magazines. Figure 3 illustrates the life cycle processes included in virgin and deinked pulp production for magazines.

These life cycle processes include:

- Raw materials extraction and processing (waste paper collection and sorting, wood acquisition)
- Pulp production
- Use (paper making and magazine production)
- Disposal
- Transportation (multiple transport steps represented by the arrows)

In the raw materials extraction and processing for deinked pulp, the waste paper is collected, sorted, and transported to the deinked pulp mill. For virgin pulp, the hardwood and softwood are cultivated and harvested, then processed as logs and chips at the sawmill and transported to the pulp mill. Both deinked and virgin pulps are produced at pulp mills. After pulp production, both virgin and deinked pulps are transported to the paper mill where the pulp is processed into paper used in magazine production. Pulp and paper can also be produced at integrated mills. Paper is then processed and printed into magazines, delivered to the customer, and ultimately disposed of.

Because we are evaluating the *relative difference* in displacing virgin pulp with deinked pulp in a product at the paper making stage, we exclude those common life cycle steps that have the same processes and impacts. Thus, we assess the "cradle-to-paper mill" impacts of virgin and deinked pulp, and do not include magazine production, use and disposal in this assessment. Interviews with technical advisors confirmed that the paper and magazine production processes, use and disposal practices are equivalent whether a magazine uses virgin pulp, or displaces some of that virgin pulp with deinked pulp.



#### Figure 3 : System Boundaries/Process Overview

#### 2.2 Specific Products Analyzed (Functional Unit)

This study evaluates the relative environmental impacts of deinked pulp versus the equivalent amount of virgin pulp it would displace. Pulp can be produced using a variety of wood or waste paper inputs depending on the paper product strength and quality requirements. Magazines utilize both mechanical pulp and kraft (i.e. chemical) pulp. The "functional unit" describes the reference to which products are related to allow results to be compared on a common basis. This study assumes that 1 kg of deinked pulp made from recovered fiber may be used to displace 1 kg of virgin pulp. Thus, the functional units of the study are:

• 1 kg deinked pulp used for magazines: 100% post-consumer premium printing and writing grade pulp (i.e., "deinked pulp") produced from high-grade waste paper

• 1 kg displaced virgin pulp used for magazines, where 1 kg of deinked pulp would displace 0.5kg bleached kraft pulp and 0.5 kg bleached mechanical pulp<sup>3</sup>

For purposes of this study, the virgin pulps displaced and deinked pulp classifications are based on pulp input specifications for the National Geographic Magazine. Since the virgin pulp displaced may vary from producer to producer, we provide a breakout of results for kraft and mechanical pulp on a pulp specific basis in Section 4.

#### 2.3 Assessment Criteria

In this section we discuss the criteria and assumptions we used for the LCA including impact categories, allocation procedures, and data requirements.

#### 2.3.1 Impact Categories

Environmental impact categories are used in life cycle assessment to relate the resource consumption and air, water, and soil emission to an environmental impact. In this study, we use the environmental impact categories in Table 2 to assess the environmental impact of deinked and virgin pulp. Other impact categories, such as biodiversity and carbon sequestration were not included, because supporting data and/or impact characterization factors could not be obtained within the project scope and available resources.

| Impact Category     | Description                                                                                                                                                                                                                                                                                                              |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Climate Change      | Related to global warming, climate change is the change to the Earth's climate caused by a changed heat balance in the Earth's atmosphere. Global Warming Potential (GWP) is the extent to which greenhouse gases (GHG) can absorb infrared radiation and thereby heat the atmosphere. GHGs include CO2, CH4, PFCs, etc. |
| Acidification       | Also known as acid rain occurs when emissions of sulfur dioxide and<br>nitrogen oxides react in the atmosphere with water, oxygen, and<br>oxidants to form various acidic compounds.                                                                                                                                     |
| Carcinogens         | Substances capable of causing cancer.                                                                                                                                                                                                                                                                                    |
| Non-carcinogens     | Substances contributing to human health impacts other than cancer, such as organ damage, reproductive difficulty, and nervous system impairment.                                                                                                                                                                         |
| Respiratory effects | Damages to human health, related to respiratory problems, as a result<br>of particulate emissions of organic and inorganic substances and<br>emissions contributing to ground-level ozone.                                                                                                                               |
| Eutrophication      | The reduction in water quality caused by nutrient loading, which leads<br>to shifts in species composition and increased biological productivity<br>such as algal blooms. Nitrogen and Phosphorous are two substances<br>most implicated in eutrophication.                                                              |

#### Table 2: Impact categories included in the analysis

<sup>&</sup>lt;sup>3</sup> Craig Liska, Vice President of Sustainability, Verso Paper

| Impact Category              | Description                                                                                                                                                                                              |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ozone Depletion              | Refers to the thinning of the stratospheric ozone layer as a result of various chlorinated and bromates substances, such as CFCs and halons.                                                             |
| Ecotoxicity                  | The measure of the potential adverse effects on populations of aquatic or terrestrial organisms.                                                                                                         |
| Smog                         | Also known as ground level ozone, is a form of air pollution produced<br>by the photochemical reaction of sunlight with hydrocarbons and<br>nitrogen oxides that have been released into the atmosphere. |
| Energy from Biomass          | The consumption of biomass such as black liquor or wood in megajoules (MJ).                                                                                                                              |
| Fossil Energy<br>Consumption | The consumption of fossil energy such as petroleum in MJ.                                                                                                                                                |
| Wood Use                     | Volume of wood used in cubic meters (m <sup>3</sup> ).                                                                                                                                                   |

Section 3.1 provides details on the methods applied to calculate these impacts.

#### 2.3.2 Allocation Procedures

Allocation is the process by which environmental impacts are assigned to the studied products, co-products, waste products, recycled products, and other outputs. This study follows the ISO 14044 allocation procedure, where it is recommended to avoid allocation by:

- Dividing unit processes into sub-processes relating to the outputs, or
- Including additional functions related to the outputs to expand the system.

Multiple allocation methods exist for estimating the environmental impacts associated with recycled materials. We applied the "cut-off" method described in ISO 14044<sup>4</sup> to model allocation for the recycled waste paper input to the deinked pulp process in which we assign no burdens from the original paper production from virgin material and no credit for displacing waste paper from landfills. Because the waste paper input is 100% recycled, no unit processes from the input of waste paper are allocated to the deinked pulp process. (As opposed to the virgin pulp, in which all of the input material emissions and impacts from wood extraction are allocated to the pulp because these input materials are not from recycled sources). We evaluate alternative recycling allocation methodologies in the sensitivity analysis (Section 4.4) to examine the effect of this assumption on the results.

#### 2.3.3 Data Requirements

Data requirements provide guidelines for data quality in the life cycle assessment and are important to ensure data quality is consistently tracked and measured throughout the analysis.

<sup>&</sup>lt;sup>4</sup> International Organization for Standardization (2006). "ISO 14040: Life cycle assessment – principles and framework." [Available online] <u>http://www.iso.org/iso/catalogue\_detail.htm?csnumber=37456</u>

Data quality metrics include precision, completeness, and representativeness. *Precision* describes the variability of the inventory data. Since this study uses only secondary data sources from academic studies and external databases, precision is difficult to assess. Therefore, we evaluated significant variables including total pulp energy and energy fuel mixture with a sensitivity analysis to demonstrate their relative impact to the results (Sections 4.1 and 4.2). *Completeness* describes the usage of the available data in existence to describe the scope of the LCA. We assessed the data completeness by conducting a contribution analysis that identified the substances that contributed significantly to one or more impact categories for one or more of the three types of pulps considered. We evaluated the contribution analysis for inconsistencies and data gaps as detailed in Section 5.4. *Representativeness* describes the ability of the data to reflect the system in question. We measure representativeness with the time, technology, and geographic coverage of the data.

Time coverage describes the age of the inventory data and the period of time over which data is collected. The time coverage of the LCA study excludes data from before the year 2000. The technological coverage of this study is current to the time period over which the data was collected, which is representative of the pulp industry on average. The geographic coverage is based on North American data when available from literature and industry sources, as described in Section 5.1. When North American data was unavailable, proxies from European or Swiss data are used from Ecoinvent datasets (described in more detail in Table 13: Summary of Secondary Data Sources and Appendix B: Life Cycle Inventory Unit Process Sources).

### 3 Quantifying Environmental Impacts: Life Cycle Impact Assessment

This section provides the results of the analysis by discussing the impact categories analyzed, presenting the impact results for deinked and virgin pulp, and illustrating the potential variability of the results through a series of sensitivity analyzes.

# 3.1 Translating Data (Life Cycle Inventory) into Life Cycle Environmental Impacts

The life cycle inventory (detailed in Section 5.3) includes hundreds of substances that represent the raw materials, energy and emissions to air, water and soil, and wastes associated within the pulping systems examined. This inventory data is central to the analysis but does not reflect relative environmental relevance. This data can be further analyzed and interpreted to provide insights into the potential environmental impacts. Inventory values can be grouped into impact categories based on characterization factors (i.e., the relative impact of each substance to each impact category) as illustrated in Figure 4 and then weighted based on their relative impact. For example, 1kg of sulfur hexafluoride (SF6) emissions may seem insignificant compared to 10,000 kg of carbon dioxide (CO2) emissions, but an impact assessment shows that the small amount of SF6 has over twice the global warming potential than the CO2 emissions.



#### Figure 4 : Inventory Translated to Environmental Impacts

ISO standards do not recommend a specific characterization method, but require the selected method to be an internationally accepted method for comparative assertions. Table 3 lists the methods applied for each impact category evaluated in this analysis.

| Impact Category                                       | Units        | Characterization Method          | Source                                                                               |  |  |  |  |
|-------------------------------------------------------|--------------|----------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|
| Climate Change-<br>Total CO2eq (Fossil<br>+ Biogenic) | kg CO2 eq    | Greenhouse Gas (GHG)<br>Protocol | World Resources Institute (WRI)<br>and the World Business Council<br>for Sustainable |  |  |  |  |
| Climate Change-<br>Fossil CO2eq                       | kg CO2 eq    |                                  | Development(WBCSD)⁵                                                                  |  |  |  |  |
| Climate Change-<br>Biogenic CO2eq                     | kg CO2 eq    |                                  |                                                                                      |  |  |  |  |
| Acidification                                         | H+ moles eq  | TRACI v.2.0 (Tool for the        | U.S. Environmental Protection                                                        |  |  |  |  |
| Carcinogens                                           | CTUh         | Reduction and                    | Agency and PRe Consultants <sup>6</sup>                                              |  |  |  |  |
| Non-carcinogens                                       | CTUh         | Assessment of Chemical           |                                                                                      |  |  |  |  |
| Respiratory effects                                   | kg PM10 eq   | and other environmental          |                                                                                      |  |  |  |  |
| Eutrophication                                        | kg N eq      | Impacts)                         |                                                                                      |  |  |  |  |
| Ozone Depletion                                       | kg CFC-11 eq |                                  |                                                                                      |  |  |  |  |
| Ecotoxicity                                           | CTUe         |                                  |                                                                                      |  |  |  |  |
| Smog                                                  | kg O3 eq     |                                  |                                                                                      |  |  |  |  |
| Energy from MJ<br>Biomass                             |              | Cumulative Energy<br>Demand      | PRe Consultants6                                                                     |  |  |  |  |
| Nonrenewable<br>(Fossil) Energy                       | MJ           |                                  |                                                                                      |  |  |  |  |
| Wood Use                                              | m3           | Inventory of wood use            | n/a                                                                                  |  |  |  |  |

| Table 3: I | mpact categorie | es and impact | characterization | methods |
|------------|-----------------|---------------|------------------|---------|
|            | inpast sateger  |               |                  |         |

<sup>&</sup>lt;sup>5</sup> WBCSD & WRI (2009) Product Life Cycle Accounting and Reporting Standard. Review Draft for

Stakeholder Advisory Group. The Greenhouse Gas Protocol Initiative. November 2009. <sup>6</sup> Goedkoop, M., Oele, M., Schryver, A., Vieira, M., & Hegger, S. (2010). SimaPro database manual methods library. PRé Consultants, Netherlands.

The GHG Protocol method corresponds to the WRI/WBSCD Product Lifecycle Accounting and Reporting Standard and is based on the IPCC 2007 method developed by the Intergovernmental Panel on Climate Change.<sup>7</sup> This method distinguishes between and individually includes each of carbon originating from fossil fuels (i.e., Climate Change- Fossil CO2eq) and biogenic carbon originating from plants and trees (i.e., Climate Change-Biogenic CO2eq). We also include an impact category that quantifies "Climate Change-Total CO2eq", and includes the carbon dioxide equivalence emissions from both fossil and biogenic sources.. We selected the Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) for the environmental impact factors because the characterization factors were developed by the Environmental Protection Agency (EPA), are North America specific, and have been applied in other North America-specific paper product LCAs. For example, the AF&PA Printing and Writing Papers Life Cycle Assessment<sup>8</sup> and the Corrugated Packaging Alliance Life Cycle Assessment of U.S. Industry-Average Corrugated Product<sup>9</sup> both characterized potential environmental impacts using the TRACI impact assessment method. Energy use and wood use (i.e., wood harvested from the forest) are obtained directly from the inventory data.

#### 3.2 Environmental Impact Results

In this section, we discuss the environmental impact results of displaced vs. deinked pulp for the impact categories discussed above. In addition, we break down the results by life cycle stages to evaluate the key impacts to identify specific process stages and substances that drive the results.

#### 3.2.1 Relative Impact of Deinked vs. Virgin Pulp

Deinked pulp has a lower relative impact than the virgin pulp it would displace in all environmental categories analyzed. Figure 5 presents the relative impact of producing a kilogram of deinked pulp derived from waste paper compared to a kilogram of displaced pulp produced from virgin wood sources for a range of environmental impact categories and delivering. Displaced pulp represents the virgin pulp that would be replaced by incoming deinked pulp in National Geographic Magazine and consists of 50% kraft and 50% mechanical pulp. Results on the graph for each impact category are normalized to "1" for the pulp with the maximum impact for each category. Table 4 provides the impact per kilogram pulp from the cradle-to-paper mill for each category.

<sup>&</sup>lt;sup>7</sup> Intergovernmental Panel on Climate Change (IPCC), (2007). *Climate Change 2007: Synthesis Report, Fourth Assessment Report of the Intergovernmental Panel on Climate Change.* 

<sup>&</sup>lt;sup>8</sup> National Council for Air and Stream Improvement (NCASI). 2010. Life cycle assessment of North American printing and writing paper products. Final report prepared for American Forest and Paper Association (AF&PA), Forest Products Association of Canada (FPAC). June 18, 2010. <sup>9</sup> PE-Americas and Five Winds International. 2010. Corrugated Packaging Life Cycle Assessment. Final report

<sup>&</sup>lt;sup>9</sup> PE-Americas and Five Winds International. 2010. Corrugated Packaging Life Cycle Assessment. Final report prepared for Corrugated Packaging Alliance (CPA).



Figure 5 : Relative impact of Deinked vs. Virgin (50% kraft/50% mechanical) pulp

Table 4: Deinked and Displaced Virgin (50% kraft/50% mechanical) pulp impacts per kilogram (cradle to paper mill)

| Impact Category                     | Units           | Deinked<br>Pulp | Displaced Virgin<br>Pulp | Relative Impact (Deinked vs. Virgin) |
|-------------------------------------|-----------------|-----------------|--------------------------|--------------------------------------|
| Total CO2 eq<br>(Fossil + Biogenic) | kg CO2 eq       | 0.60            | 2.87                     | 0.21                                 |
| Fossil CO2 eq                       | kg CO2 eq       | 0.54            | 1.63                     | 0.33                                 |
| Biogenic CO2 eq                     | kg CO2 eq       | 0.06            | 1.24                     | 0.05                                 |
| Acidification                       | Mol H+ eq       | 0.21            | 0.75                     | 0.28                                 |
| Carcinogenics                       | CTUh            | 1.53E-08        | 3.69E-08                 | 0.42                                 |
| Non carcinogenics                   | CTUh            | 7.78E-08        | 1.57E-07                 | 0.49                                 |
| Respiratory effects                 | kg PM10<br>eq   | 5.70E-04        | 2.27E-03                 | 0.25                                 |
| Eutrophication                      | kg N eq         | 6.80E-04        | 3.21E-03                 | 0.21                                 |
| Ozone depletion                     | kg CFC-11<br>eq | 1.25E-08        | 3.57E-08                 | 0.35                                 |
| Ecotoxicity                         | CTUe            | 0.93            | 2.36                     | 0.39                                 |
| Smog                                | g O3eq          | 0.05            | 0.13                     | 0.38                                 |
| Non renewable (fossil)<br>Energy    | MJ              | 6.72            | 22.57                    | 0.30                                 |
| Energy from Biomass                 | MJ              | 0.53            | 12.92                    | 0.04                                 |
| Wood Use                            | m3              | 5.23E-06        | 3.40E-03                 | 0.002                                |

#### 3.2.2 Key Life Cycle Stages: Contribution Analysis

LCA results have variability and uncertainty associated with a myriad of model assumptions and input data. The contribution analysis evaluates the relative impact of each life cycle process for each impact category. This analysis highlights key elements on which to focus by identifying specific process stages and substances that drive the results and variability. The contribution analysis and details can inform the following:

- Actions pulp producers can take to reduce impacts
- Identification of high variability impact factors (such as transportation distances, energy use and fuel mix) that can be examined via a sensitivity analysis or on a mill-specific basis)
- Target opportunities for data enhancements

Figure 6, 7, and 8 illustrate the relative contribution of significant inputs and processes to the environmental impacts by life cycle stage for deinked pulp, kraft pulp and mechanical pulp, respectively. The life cycle stages and inputs specific to the pulp process are shown across the top of the table. Impact categories are listed in the first column. Looking across a row allows the reader to see the relative effect of each life cycle process to the impact categories are effected by the lifecycle stage shown in that column. We evaluated the results for deinked pulp from deinked waste paper, bleached kraft and bleached mechanical pulp separately; these tables are specific to the relative impacts of the life cycle processes **within** the individual pulp processes only and should not be used for direct comparisons between pulp products. For example, hydrogen peroxide contributes 19% of deinked pulp carcinogens relative to the other deinked pulp carcinogens relative to other mechanical pulp product-specific processes. But hydrogen peroxide contributes 27% of mechanical pulp carcinogens relative to other mechanical pulp product-specific processes. These results do not indicate that hydrogen peroxide contributes less to the impact of deinked pulp compared to mechanical pulp.

Tables 5, 6 and 7 provide details on the factors that influence the significant impacts for deinked pulp, kraft pulp and mechanical pulp. For example, diesel fuel used in transportation results in the majority of the potential environmental impacts associated with waste paper collection, sorting & transport to mill in the deinked pulping process.

|                     | Waste Paper                                           |                      | Pulpin              | g Input Che        | emicals              |             | Purchase    | d Energy<br>combust | acquisitior<br>ion | 1&   |                                   | Disposa | al from Pulping                       |                                 |
|---------------------|-------------------------------------------------------|----------------------|---------------------|--------------------|----------------------|-------------|-------------|---------------------|--------------------|------|-----------------------------------|---------|---------------------------------------|---------------------------------|
|                     | Collection,<br>Sorting &<br>Transport to<br>Pulp mill | Hydrogen<br>peroxide | Sodium<br>hydroxide | Sodium<br>chloride | Sodium<br>dithionite | Fatty acids | Electricity | RFO                 | Natural<br>Gas     | Coal | Pulp Mill<br>process<br>emissions | MSW     | Deinking<br>Sludge Ash to<br>Landfill | Pulp Transport<br>to Paper Mill |
| Fossil CO2 eq       | 19%                                                   | 2%                   | 2%                  | 1%                 | 2%                   | 2%          | 40%         | 2%                  | 4%                 | 4%   | 0%                                | 0%      | 5%                                    | 17%                             |
| Acidification       | 14%                                                   | 1%                   | 2%                  | 0%                 | 10%                  | 3%          | 45%         | 1%                  | 4%                 | 4%   | 0%                                | 0%      | 1%                                    | 14%                             |
| Carcinogenics       | 20%                                                   | 19%                  | 1%                  | 0%                 | 4%                   | 2%          | 10%         | 1%                  | 1%                 | 1%   | 0%                                | 0%      | 32%                                   | 8%                              |
| Non carcinogenics   | 13%                                                   | 1%                   | 3%                  | 0%                 | 35%                  | 1%          | 11%         | 2%                  | 1%                 | 6%   | 0%                                | 0%      | 11%                                   | 15%                             |
| Respiratory effects | 9%                                                    | 1%                   | 2%                  | 1%                 | 12%                  | 10%         | 45%         | 0%                  | 5.0%               | 7%   | 0%                                | 0%      | 2%                                    | 6%                              |
| Eutrophication      | 11%                                                   | 3%                   | 1%                  | 0%                 | 8%                   | 20%         | 16%         | 0%                  | 0%                 | 1%   | 24%                               | 2%      | 6%                                    | 5%                              |
| Ozone depletion     | 12%                                                   | 10%                  | 12%                 | 1%                 | 8%                   | 7%          | 16%         | 1%                  | 7%                 | 6%   | 0%                                | 0%      | 8%                                    | 12%                             |
| Ecotoxicity         | 30%                                                   | 4%                   | 1%                  | 0%                 | 4%                   | 4%          | 11%         | 3%                  | 3%                 | 0%   | 9%                                | 0%      | 7%                                    | 24%                             |
| Smog                | 26%                                                   | 1%                   | 1%                  | 0%                 | 1%                   | 3%          | 30%         | 1%                  | 1%                 | 3%   | 0%                                | 0%      | 2%                                    | 30%                             |
| Biogenic CO2 eq     |                                                       | 1%                   | 0%                  | 0%                 | 0%                   | 25%         | 17%         | 0%                  | 0%                 | 1%   | 0%                                | 3%      | 1%                                    | 1%                              |
| Energy from Biomass | 0%                                                    | 0%                   | 0%                  | 0%                 | 0%                   | 98%         | 1%          | 0%                  | 0%                 | 0%   | 0%                                | 0%      | 0%                                    | 0%                              |
| Fossil Energy       | 14%                                                   | 3%                   | 2%                  | 1%                 | 2%                   | 2%          | 45%         | 2%                  | 5%                 | 4%   | 0%                                | 0%      | 2%                                    | 18%                             |
| Wood Use            | 1%                                                    | 1%                   | 0%                  | 0%                 | 2%                   | 76%         | 16%         | 0%                  | 0%                 | 2%   | 0%                                | 0%      | 1%                                    | 0%                              |

### Figure 6 : Impact by Lifecycle stage- Deinked Pulp

| Life Cycle Stage                                     | Most Impactful<br>Unit Processes                        | Significant Impact Categories                                                                                                                                       | Contributors                                                               |  |  |  |  |
|------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Raw Material<br>Extraction and<br>Processing         | Waste paper<br>collection, sorting,<br>and transport to | Fossil CO2 eq, acidification, non-<br>carcinogens, non-renewable fossil<br>energy                                                                                   | Diesel fuel used in transportation                                         |  |  |  |  |
| pulp mill                                            |                                                         | Eutrophication, ecotoxicity                                                                                                                                         | Disposal of waste from sorting                                             |  |  |  |  |
|                                                      |                                                         | Respiratory effects, ozone depletion                                                                                                                                | Electricity use from coal and natural gas                                  |  |  |  |  |
|                                                      |                                                         | Biogenic CO <sub>2</sub> eq                                                                                                                                         | Waste paper incineration                                                   |  |  |  |  |
| Pulping Input                                        | Hydrogen                                                | Carcinogens                                                                                                                                                         | Antraquinone process emission                                              |  |  |  |  |
| Chemicals                                            | peroxide                                                | Ozone depletion                                                                                                                                                     | Electricity use from natural gas                                           |  |  |  |  |
|                                                      | Sodium hydroxide                                        | Ozone depletion                                                                                                                                                     | CFC-10 process emission.                                                   |  |  |  |  |
|                                                      | Sodium dithionite                                       | Acidification, respiratory effects                                                                                                                                  | SO <sub>2</sub> process emissions                                          |  |  |  |  |
|                                                      |                                                         | Non-carcinogens, Eutrophication                                                                                                                                     | Zinc process emissions                                                     |  |  |  |  |
|                                                      | 10                                                      | Ozone depletion                                                                                                                                                     | Crude oil production                                                       |  |  |  |  |
|                                                      | Fatty acids <sup>10</sup>                               | Respiratory effects,<br>eutrophication, Energy from<br>biomass                                                                                                      | Palm oil production                                                        |  |  |  |  |
|                                                      |                                                         | Wood Use                                                                                                                                                            | Palm fruit cultivation                                                     |  |  |  |  |
|                                                      |                                                         | Ozone depletion                                                                                                                                                     | Crude oil production, natural gas use                                      |  |  |  |  |
| Purchased<br>Energy<br>acquisition and<br>combustion | Electricity                                             | Fossil CO <sub>2</sub> eq, acidification,<br>carcinogens, non-carcinogens,<br>respiratory effects, non-renewable<br>fossil energy                                   | Coal                                                                       |  |  |  |  |
|                                                      |                                                         | Ozone depletion, ecotoxicity                                                                                                                                        | Natural gas                                                                |  |  |  |  |
|                                                      |                                                         | Biogenic CO2 eq                                                                                                                                                     | Municipal Solid Waste Disposal                                             |  |  |  |  |
|                                                      | Natural Gas                                             | Ozone Depletion                                                                                                                                                     | Halon 1211 process emission                                                |  |  |  |  |
|                                                      |                                                         | Non-renewable fossil energy                                                                                                                                         | Natural Gas in ground                                                      |  |  |  |  |
|                                                      | Coal                                                    | Respiratory effects                                                                                                                                                 | SO <sub>2</sub> process emission                                           |  |  |  |  |
|                                                      |                                                         | Ozone Depletion                                                                                                                                                     | R-40 process emission                                                      |  |  |  |  |
| <b></b>                                              |                                                         | Non-carcinogens                                                                                                                                                     | Mercury process emission                                                   |  |  |  |  |
| Pulp millPulp mill processprocessemissionsemissions  |                                                         | Eutrophication                                                                                                                                                      | COD from organic matter,<br>phosphorous and nitrogen emissions<br>to water |  |  |  |  |
|                                                      |                                                         | Ecotoxicity                                                                                                                                                         | Chlorophenols                                                              |  |  |  |  |
| Disposal from<br>pulping                             | Deinking Sludge<br>Ash to Landfill                      | Carcinogens, non-carcinogens,<br>eutrophication, ozone depletion,<br>ecotoxicity                                                                                    | Processes to make cement for solidification.                               |  |  |  |  |
| Transportation                                       | Pulp Transport to<br>Paper Mill                         | Fossil CO <sub>2</sub> eq, acidification,<br>carcinogens, non-carcinogens,<br>respiratory effects, ozone<br>depletion, ecotoxicity, smog, non-<br>renewable, fossil | Diesel fuel for transportation.                                            |  |  |  |  |

| Table 5: Deinked Pu | Ip Significant | Life Cycle Stage | <b>Contributing Factors</b> |
|---------------------|----------------|------------------|-----------------------------|
|---------------------|----------------|------------------|-----------------------------|

\*Data enhancement opportunity (See Table 16)

<sup>&</sup>lt;sup>10</sup> Fatty acids are used to produce fatty acid salts or soaps, which is one of the substances used in the deinking of pulp [Hannuksela and Rosencrance. Deinking Chemistry. Kemira Chemicals Inc. Available: http://www.cost-e46.eu.org/files/Deinking%20primer/Deinking%20Chemistry-FINAL.pdf], Listed as a data enhancement opportunity in Table 16.

|                     |                     |                      | Pulping             | input ch           | emicals           |                             | Purchased   | l Energ<br>combus | y acquis<br>stion | sition &       | Renewable                   |                                   |                                    | Waste from Pulping |                            |                                         |                                     |                               |
|---------------------|---------------------|----------------------|---------------------|--------------------|-------------------|-----------------------------|-------------|-------------------|-------------------|----------------|-----------------------------|-----------------------------------|------------------------------------|--------------------|----------------------------|-----------------------------------------|-------------------------------------|-------------------------------|
|                     | Wood<br>Acquisition | Hydrogen<br>peroxide | Sodium<br>hydroxide | Sodium<br>chlorate | Sulphuric<br>acid | Other<br>Input<br>Chemicals | Electricity | Coal              | RFO               | Natural<br>Gas | Energy<br>(Black<br>Liquor) | Pulp Mill<br>process<br>emissions | Hazardo<br>us<br>Waste<br>Disposal | мsw                | Wood<br>ash to<br>Landfill | Green<br>Liquor<br>Dregs to<br>Landfill | Limestone<br>residue to<br>Landfill | Transport<br>to Paper<br>Mill |
| Fossil CO2 eq       | 7%                  | 0%                   | 2%                  | 15%                | 0%                | 1%                          | 25%         | 7%                | 26%               | 16%            | 0%                          | 0%                                | 0%                                 | 0%                 | 0%                         | 0%                                      | 0%                                  | 0%                            |
| Acidification       | 7%                  | 0%                   | 1%                  | 11%                | 3%                | 1%                          | 23%         | 0%                | 5%                | 13%            | 1%                          | 35%                               | 0%                                 | 0%                 | 0%                         | 0%                                      | 0%                                  | 0%                            |
| Carcinogenics       | 2%                  | 0%                   | 0%                  | 57%                | 0%                | 0%                          | 5%          | 1%                | 11%               | 2%             | 2%                          | 2%                                | 0%                                 | 0%                 | 0%                         | 15%                                     | 0%                                  | 0%                            |
| Non carcinogenics   | 6%                  | 0%                   | 3%                  | 13%                | 0%                | 0%                          | 7%          | 10%               | 25%               | 6%             | 25%                         | 3%                                | 0%                                 | 0%                 | 0%                         | 0%                                      | 0%                                  | 0%                            |
| Respiratory effects | 3%                  | 0%                   | 1%                  | 10%                | 3%                | 1%                          | 19%         | 3%                | 3%                | 14%            | 21%                         | 22%                               | 0%                                 | 0%                 | 0%                         | 0%                                      | 0%                                  | 0%                            |
| Eutrophication      | 2%                  | 0%                   | 0%                  | 27%                | 0%                | 0%                          | 6%          | 1%                | 2%                | 1%             | 0%                          |                                   | 0%                                 | 2%                 | 0%                         | 4%                                      | 0%                                  | 0%                            |
| Ozone depletion     | 3%                  | 0%                   | 8%                  | 27%                | 1%                | 1%                          | 9%          | 9%                | 16%               | 26%            | 0%                          | 0%                                | 0%                                 | 0%                 | 0%                         | 0%                                      | 0%                                  | 0%                            |
| Ecotoxicity         | 6%                  | 0%                   | 0%                  | 11%                | 0%                | 0%                          | 5%          | 0%                | 28%               | 9%             | 1%                          | 35%                               | 0%                                 | 0%                 | 0%                         | 2%                                      | 0%                                  | 0%                            |
| Smog                | 17%                 | 0%                   | 1%                  | 8%                 | 0%                | 0%                          | 20%         | 1%                | 6%                | 1%             | 1%                          | 43%                               | 0%                                 | 0%                 | 0%                         | 0%                                      | 0%                                  | 1%                            |
| Biogenic CO2 eq     | 0%                  | 0%                   | 0%                  | 0%                 | 0%                | 0%                          | 1%          | 0%                | 0%                | 0%             |                             | 0%                                | 0%                                 | 0%                 | 0%                         | 0%                                      | 0%                                  | 0%                            |
| Energy from Biomass | 0%                  | 0%                   | 0%                  | 0%                 | 0%                | 0%                          | 0%          | 0%                | 0%                | 0%             |                             | 0%                                | 0%                                 | 0%                 | 0%                         | 0%                                      | 0%                                  | 0%                            |
| Fossil Energy       | 7%                  | 0%                   | 2%                  | 13%                | 0%                | 1%                          | 26%         | 6%                | 26%               | 20%            | 0%                          | 0%                                | 0%                                 | 0%                 | 0%                         | 0%                                      | 0%                                  | 0%                            |
| Wood Use            | 100%                | 0%                   | 0%                  | 0%                 | 0%                | 0%                          | 0%          | 0%                | 0%                | 0%             | 0%                          | 0%                                | 0%                                 | 0%                 | 0%                         | 0%                                      | 0%                                  | 0%                            |

### Figure 7 : Impact by Lifecycle stage- Kraft Pulp

| Life Cycle Stage                                  | Most Impactful<br>Unit Processes | Significant Impact<br>Categories                                                                                                                | Contributors                                              |
|---------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Raw Material                                      | Wood                             | Fossil CO <sub>2</sub> eq, acidification,                                                                                                       | Diesel fuel used in                                       |
| Extraction and                                    | Acquisition                      | smog                                                                                                                                            | transportation                                            |
| Processing                                        |                                  | Non-carinogens, ecotoxicity, smog                                                                                                               | Crude oil used in harvesting                              |
| Pulping Input<br>Chemicals                        | Sodium<br>hydroxide              | Ozone Depletion                                                                                                                                 | CFC-10 process emission                                   |
|                                                   | Sodium chlorate                  | Fossil CO <sub>2</sub> eq, acidification,<br>respiratory effects, smog,<br>non-renewable fossil energy                                          | Coal from intensive electricity use                       |
|                                                   |                                  | Non-carcinogens,<br>eutrophication                                                                                                              | Arsenic and phosphate from<br>coal electricity production |
|                                                   |                                  | Carcinogens, ecotoxicity                                                                                                                        | Chromium VI process emission                              |
| Purchased Energy<br>acquisition and<br>combustion | Electricity                      | Fossil CO2 eq, acidification,<br>non-carcinogens, respiratory<br>effects, eutrophication,<br>ecotoxicity, smog, non-<br>renewable fossil energy | Coal electricity production                               |
|                                                   |                                  | Ozone depletion                                                                                                                                 | Natural gas use                                           |
|                                                   |                                  | Carcinogens                                                                                                                                     | Disposal of basic oxygen<br>furnace wastes                |
|                                                   | Coal                             | Fossil CO <sub>2</sub> eq                                                                                                                       | CO2 process emission                                      |
|                                                   |                                  | Non-carcinogens                                                                                                                                 | Mercury process emission                                  |
|                                                   |                                  | Ozone depletion                                                                                                                                 | R-40 process emission                                     |
|                                                   |                                  | Non-renewable fossil energy                                                                                                                     | Coal in ground                                            |
|                                                   | Residual Fuel<br>Oil (RFO)       | Fossil CO <sub>2</sub> eq, carcinogens,<br>non-carcinogens, ecotoxicity,<br>smog, non-renewable fossil<br>energy                                | Crude oil production                                      |
|                                                   |                                  | Acidification                                                                                                                                   | SOx process emission                                      |
|                                                   |                                  | Ozone depletion                                                                                                                                 | Halon 1211 process emission                               |
|                                                   | Natural Gas                      | Fossil CO <sub>2</sub> eq                                                                                                                       | CO <sub>2</sub> process emission                          |
|                                                   |                                  | Acidification                                                                                                                                   | SO <sub>2</sub> process emission.                         |
|                                                   |                                  | Non-carcinogen, ecotoxicity                                                                                                                     | Barium process emission                                   |
|                                                   |                                  | Ozone depletion                                                                                                                                 | Halon 1211 process emission                               |
|                                                   |                                  | Non-renewable fossil energy                                                                                                                     | Natural gas in ground                                     |
| Energy from                                       | Black Liquor                     | Non-carcinogens                                                                                                                                 | Acrolein combustion emission                              |
| Biomass                                           |                                  | Respiratory effects                                                                                                                             | Particulates                                              |
|                                                   |                                  | Biogenic CO2eq                                                                                                                                  | CO <sub>2</sub> emissions from combustion                 |
| Pulp mill process<br>emissions                    | Pulp mill<br>process             | Acidification, Respiratory effects, smog                                                                                                        | SO <sub>2</sub> and NOx process emissions                 |
|                                                   | emissions                        | Eutrophication                                                                                                                                  | COD process releases of<br>organic matter to water*       |
|                                                   |                                  | Ecotoxicity                                                                                                                                     | Chlorophenols process<br>emission*                        |
| Waste from pulping                                | Green Liquor<br>Dregs            | Carcinogens                                                                                                                                     | Chromium VI process emission                              |

#### Table 6: Kraft Pulp Significant Life Cycle Stage Contributors

\*Data enhancement opportunity (See Table 16)

|                     | Maad        | Pulping i            | nput che | emicals            | Purcha      | sed Ene | ergy | P!     | Pulp Mill            | Dispos            | al from | Pulping                 | Transport to |
|---------------------|-------------|----------------------|----------|--------------------|-------------|---------|------|--------|----------------------|-------------------|---------|-------------------------|--------------|
|                     | Acquisition | Hydrogen<br>peroxide | EDTA     | Sodium<br>silicate | Electricity | Coal    | RFO  | Energy | process<br>emissions | Other<br>Disposal | MSW     | Wood ash<br>to Landfill | Paper Mill   |
| Fossil CO2 eq       | 3%          | 1%                   | 1%       | 2%                 | 90%         | 2%      | 1%   | 0%     | 0%                   | 0%                | 0%      | 0%                      | 1%           |
| Acidification       | 3%          | 1%                   | 0%       | 1%                 | 91%         | 2%      | 1%   | 0%     | 1%                   | 0%                | 0%      | 0%                      | 0%           |
| Carcinogenics       | 4%          | 27%                  | 3%       | 5%                 | 58%         | 1%      | 1%   | 0%     | 0%                   | 0%                | 0%      | 0%                      | 1%           |
| Non carcinogenics   | 7%          | 1%                   | 2%       | 8%                 | 68%         | 8%      | 3%   | 1%     | 0%                   | 0%                | 0%      | 1%                      | 1%           |
| Respiratory effects | 1%          | 1%                   | 0%       | 1%                 | 89%         | 3%      | 0%   | 4%     | 0%                   | 0%                | 0%      | 0%                      | 0%           |
| Eutrophication      | 1%          | 1%                   | 2%       | 2%                 | 26%         | 0%      | 0%   | 1%     | 66%                  | 0%                | 0%      | 0%                      | 0%           |
| Ozone depletion     | 3%          | 7%                   | 5%       | 13%                | 48%         | 4%      | 1%   | 18%    | 0%                   | 0%                | 0%      | 0%                      | 0%           |
| Ecotoxicity         | 11%         | 6%                   | 2%       | 2%                 | 72%         | 0%      | 4%   | 0%     | 0%                   | 0%                | 0%      | 0%                      | 2%           |
| Smog                | 9%          | 0%                   | 0%       | 1%                 | 81%         | 2%      | 1%   | 1%     | 3%                   | 0%                | 0%      | 0%                      | 1%           |
| Biogenic CO2 eq     | 0%          | 1%                   | 0%       | 0%                 | 68%         | 0%      | 0%   | 29%    | 0%                   | 0%                | 0%      | 0%                      | 0%           |
| Energy from Biomass | 0%          | 0%                   | 0%       | 1%                 | 12%         | 0%      | 0%   | 87%    | 0%                   | 0%                | 0%      | 0%                      | 0%           |
| Fossil Energy       | 3%          | 1%                   | 1%       | 2%                 | 90%         | 2%      | 1%   | 0%     | 0%                   | 0%                | 0%      | 0%                      | 1%           |
| Wood Use            | 100%        | 0%                   | 0%       | 0%                 | 0%          | 0%      | 0%   | 0%     | 0%                   | 0%                | 0%      | 0%                      | 0%           |

### Figure 8 : Impact by Lifecycle stage- Mechanical Pulp

| Life Cycle Stage                                  | Most Impactful<br>Unit Processes | Significant Impact<br>Categories                                                                                                                                                                                                                            | Contributors                                                               |  |  |
|---------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| Raw Material<br>Extraction and<br>Processing      | Wood acquisition                 | Non-carcinogens,<br>ecotoxicity, smog, wood<br>use                                                                                                                                                                                                          | Diesel fuel used in<br>transportation and crude<br>oil used in harvesting. |  |  |
| Pulping Input<br>Chemicals                        | Hydrogen peroxide                | Carcinogens, ecotoxicity                                                                                                                                                                                                                                    | Antraquinone organic<br>compound process<br>emission                       |  |  |
|                                                   |                                  | Ozone depletion                                                                                                                                                                                                                                             | Natural gas from<br>intensive electricity use.                             |  |  |
|                                                   | EDTA                             | Ozone depletion                                                                                                                                                                                                                                             | Gaseous chlorine process emission.                                         |  |  |
|                                                   | Sodium silicate                  | Carcinogens                                                                                                                                                                                                                                                 | Spoil from coal mining <sup>11</sup>                                       |  |  |
|                                                   |                                  | Non-carcinogens                                                                                                                                                                                                                                             | Sodium hydroxide input to process                                          |  |  |
|                                                   |                                  | Ozone depletion                                                                                                                                                                                                                                             | Natural gas from<br>intensive electricity use.                             |  |  |
| Purchased Energy<br>acquisition and<br>combustion | Electricity                      | Fossil CO <sub>2</sub> eq,<br>acidification,<br>carcinogens, non-<br>carcinogens, respiratory<br>effects, eutrophication,<br>ozone depletion,<br>ecotoxicity, smog,<br>biogenic CO <sub>2</sub> eq, energy<br>from biomass, non-<br>renewable fossil energy | Coal electricity<br>production.                                            |  |  |
|                                                   | Coal                             | Non-carcinogen                                                                                                                                                                                                                                              | Mercury process<br>emission                                                |  |  |
| Energy from<br>Biomass                            | Biomass Energy                   | Ozone depletion                                                                                                                                                                                                                                             | CFC-10 process emission.                                                   |  |  |
|                                                   |                                  | Biogenic CO2eq                                                                                                                                                                                                                                              | CO <sub>2</sub> emissions from combustion                                  |  |  |
| Pulp mill process<br>emissions                    | Pulp mill process<br>emissions   | Eutrophication                                                                                                                                                                                                                                              | COD and BOD from<br>releases of organic<br>matter to water.*               |  |  |

Table 7: Mechanical Pulp Significant Life Cycle Stage Contributors

\*Data enhancement opportunity (See Table 16)

# 4 Quantifying the Impact of Variability and Assumptions: Sensitivity Analysis

Sensitivity analysis is a systematic procedure for estimating the effects of the choices made regarding methods and data on the outcome of a study<sup>12</sup>. Sensitivity analysis can be used to:

<sup>&</sup>lt;sup>11</sup> Spoil from mining includes waste-specific emissions from lignite spoil leachate and short and long term emissions to ground water from rainwater infiltration leaching. It does not include leaching by lateral groundwater flow.

<sup>&</sup>lt;sup>12</sup> ISO 14040:2006, p. 5, Definitions

- Target data quality improvements and determine data precision;
- direct behavior by identifying what actions matter; and
- allow for product comparison recognizing variability.

Sensitivity analysis is a key component of life cycle assessment data quality analysis and can be applied to quantify the impact of changes in assumptions or input data on study results. For example, if the study assumes certain average values for production values, the sensitivity analysis can evaluate the impact if minimum or maximum values are applied instead. Similarly, if the study assumes a certain fuel mix used for energy, the sensitivity analysis can determine whether a change to that fuel mix assumption will significantly affect study results. It can be used to determine key factors that may have a material impact when changes are made, and can be used to describe the relative variability of study results. This section presents the results for sensitivity analyses based on varying the following parameters:

Scenario 1: Total pulping production energy used Scenario 2: Fuel mix of pulping production energy Scenario 3: Impact characterization method Scenario 4: Recycling allocation methodology

We selected the scenarios based on stakeholder group feedback from a list of key parameters identified during the scope, data collection and analysis phases of the project. For scenarios 1, 2 and 3 we evaluated mechanical and kraft pulp separately to enable a comparison of the virgin alternate pulp products, as energy use and fuel mix can vary significantly within and between the two systems

#### 4.1 Scenario 1: Variations in Total Pulp Production Energy

As illustrated in Figures 6 through 8, energy used in pulp production is the most significant contributor to deinked, kraft and mechanical pulp environmental impacts for the majority of impact categories evaluated. Energy use can vary significantly based on factors such as type of mill, type of technology and equipment efficiency. For example, integrated mills avoid intermediate drying of the pulp, which is on the order of 25% of the total heat requirement for a non-integrated kraft mill<sup>13</sup>. The secondary data evaluated (shown in Table 8) reported a wide range of pulping energy requirements.

Figure 9 illustrates the relative impact of deinked, kraft and mechanical pulp based on the pulping production energy use ranges shown in Table 8. Kraft and mechanical pulp are shown separately to illustrate the differences between the alternative pulp products. Results for each impact category are normalized to "1" for the maximum impact among the pulp products compared. For example, the mechanical pulp (orange bar) has the highest relative impact for Fossil CO2e and is set at 1; the kraft and deinked pulp values are shown relative to this normalized value. The light blue error bars in Figure 9 demonstrate the range in impacts that

<sup>&</sup>lt;sup>13</sup> Ecofys, Methodology for the free allocation of emission allowances in the EU ETS post 2012, Sector report for the pulp and paper industry, November 2009.

result from applying the low value and high value range of total pulping process energy for each pulp type, relative to the normalized maximum impact. We obtained the low and high energy production values from the secondary data sources as noted in Table 8 to represent a range of feasible scenarios. Specific mills may have higher or lower total energy values than those included in the analysis.

| Pulp       | Baseline | Low                 | High                |
|------------|----------|---------------------|---------------------|
| Kraft      | 36.17    | 11.47 <sup>14</sup> | 57.73 <sup>15</sup> |
| Mechanical | 7.91     | 7.09 <sup>16</sup>  | 10.48 <sup>17</sup> |
| Deinked    | 1.60     | 1.24 <sup>18</sup>  | 2.10 <sup>19</sup>  |

| Table 8: | Range of | Pulp Pr | oduction | Enerav | values b | v Pul       | o Tvpe                                  | (MJ   | per MT) | )  |
|----------|----------|---------|----------|--------|----------|-------------|-----------------------------------------|-------|---------|----|
|          |          |         |          |        | 141400   | · · · · · · | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ····• |         | ۰. |

| 1.4  |            |               |        |            |           |          |        |       |
|------|------------|---------------|--------|------------|-----------|----------|--------|-------|
| 1.2  |            |               |        |            |           | _        |        |       |
| . 1  |            |               |        | ╻╢         |           |          |        |       |
| 0.8  |            |               |        | ┢╢         |           |          |        | _     |
| 0.6  |            |               |        |            |           |          |        | _     |
| 0.4  |            |               |        |            |           |          |        |       |
| 0.2  |            |               |        |            |           |          |        |       |
| 2°°. | 20 De0 100 | s erits erits | Kect S | tion stion | ticity st | oo seter | anass. | Ne Se |

#### Figure 9 : Variation in Relative Impact based on a range of Total energy per kg/pulp

<sup>&</sup>lt;sup>14</sup> Hard wood kraft process emissions from Table 4.5 , American Institute of Chemical Engineers (AIChE) (2006) Pulp and Paper Industry Bandwidth Study.

<sup>&</sup>lt;sup>15</sup> Tables 4-2 and 4-3 from Natural Resources Canada (2008) Benchmarking Energy Use in Canadian Pulp and Paper Mills Study. Average of 75th percentile integrated and non-integrated kraft pulp mill.

<sup>&</sup>lt;sup>16</sup> Tables 3-3/3-5 (for mechanical) from Natural Resources Canada (2008) Benchmarking Energy Use in Canadian Pulp and Paper Mills Study. Average of 25th percentile integrated and non-integrated mechanical pulp mill.

<sup>&</sup>lt;sup>17</sup> Stone groundwood pulp (SGW) process emissions from Table 4.5 , American Institute of Chemical Engineers (AIChE) (2006) Pulp and Paper Industry Bandwidth Study.

<sup>&</sup>lt;sup>18</sup> Department of Energy: Energy Efficiency and Renewable Energy Industrial Technologies Profile (2005) Energy and Environmental Profile of the US Pulp and Paper Industry

<sup>&</sup>lt;sup>19</sup> NRC Tables 3-3/3-5 (for recycled pulp) from Natural Resources Canada (2008) Benchmarking Energy Use in Canadian Pulp and Paper Mills Study.

Table 9 provides a summary of the range in relative values considering variations in the total pulp manufacturing energy.

| Impact Category                                                                                | Deinked Pulp  | Kraft Pulp | Mechanical Pulp |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|---------------|------------|-----------------|--|--|--|--|--|
|                                                                                                |               |            |                 |  |  |  |  |  |
| Total CO2 eq (Fossil + Biogenic)                                                               | 0.13-0.18     | 0.39-1.53  | 0.4-0.57        |  |  |  |  |  |
| Fossil CO2 eq                                                                                  | 0.28-0.39     | 0.48-1.41  | 0.9-1.3         |  |  |  |  |  |
| Biogenic CO2 eq                                                                                | 0.02-0.03     | 0.33-1.59  | 0.04-0.06       |  |  |  |  |  |
| Acidification                                                                                  | 0.23-0.32     | 0.71-1.25  | 0.82-1.18       |  |  |  |  |  |
| Carcinogens                                                                                    | 0.27-0.29     | 0.85-1.13  | 0.31-0.39       |  |  |  |  |  |
| Non Carcinogens                                                                                | 0.32-0.37     | 0.5-1.44   | 0.34-0.47       |  |  |  |  |  |
| Respiratory effects                                                                            | 0.19-0.27     | 0.6-1.36   | 0.7-1.02        |  |  |  |  |  |
| Eutrophication                                                                                 | 0.18-0.2      | 0.94-1.05  | 0.77-0.86       |  |  |  |  |  |
| Ozone depletion                                                                                | 0.264-0.319   | 0.6-1.35   | 0.59-0.79       |  |  |  |  |  |
| Ecotoxicity                                                                                    | 0.24-0.27     | 0.7-1.26   | 0.25-0.34       |  |  |  |  |  |
| Smog                                                                                           | 0.33-0.4      | 0.8-1.17   | 0.81-1.14       |  |  |  |  |  |
| Fossil Energy                                                                                  | 0.25-0.35     | 0.46-1.41  | 0.9-1.3         |  |  |  |  |  |
| Energy from Biomass                                                                            | 0.0207-0.0209 | 0.32-1.6   | 0.016-0.024     |  |  |  |  |  |
| Wood Use                                                                                       | 0.0011-0.0012 | 1-1        | 0.521-0.522     |  |  |  |  |  |
| Key                                                                                            |               |            |                 |  |  |  |  |  |
| Pulp that consistently has the lowest relative environmental impact for each of the total pulp |               |            |                 |  |  |  |  |  |
| process energy scenarios evalua                                                                | ated          |            |                 |  |  |  |  |  |

#### Table 9: Range of relative impacts based on variations in total pulp production energy

Pulps that can potentially have the lowest relative environmental impact depending on the total pulp process energy (i.e., the range of relative minimum impacts overlaps)

Pulp that has the highest relative environmental impact for each of the three total pulp process energy scenarios evaluated

Pulps that can potentially have the highest relative environmental impact depending on the total pulp process energy (i.e., the range of relative maximum impacts overlaps)

Pulp whose impact is neither the relative minimum nor maximum of the three pulp types evaluated

**Scenario 1 Analysis:** Variations in total pulp manufacturing energy can have a significant impact across a range of impact categories. Recovered fiber has a consistently lower environmental impact for the majority of environmental impacts. For non-carcinogens and ecotoxicity and Energy from Biomass, recovered fiber can potentially have higher impacts than mechanical pulp. These results can be used in conjunction with the process contribution analysis to identify potential actions. For example, as illustrated in Figure 6, over a third of the non-carcinogen effects of deinked pulp are due to the input chemical sodium dithionate; this chemical could be targeted for reduction or substitution. For seven out of 14 categories, kraft pulp consistently has the highest relative impact. Kraft pulp has the highest relative impact for biogenic carbon dioxide equivalence, due to the large amount of biomass fuel, primarily black liquor, used to produce energy during its production. For six categories (primarily related to air

emissions from energy consumption) the relative impact of kraft versus mechanical pulp depends on the total energy requirements for each process. For these categories, mechanical pulp can have a relatively higher impact than kraft pulp or vice versa, depending on the total pulp production energy used in both processes.

#### 4.2 Scenario 2: Variations in Pulp Production Energy Fuel Mix

Pulp mills can utilize different sources of energy (e.g., purchased energy, coal, natural gas, hog fuel, black liquor etc.) Depending on the type of mill, specific processes and equipment are used. Different raw materials, input chemicals, waste and emissions are associated with different sources of energy and using different fuel mixes can result in different environmental impacts. For example, acquiring and combusting natural gas produces approximately 60% of the GHG emissions as coal per mega joule.

Figure 10 illustrates the relative impact of deinked, kraft and mechanical pulp based on the fuel mix scenarios shown in Table 10. These scenarios (Baseline, Mix A, and Mix B) are based on the proportion of purchased electricity (for deinked pulp and mechanical pulp) and black liquor (for kraft pulp) obtained from the secondary data sources listed in Table 13. The additional fuel types and percentages are estimated based on the These scenarios represent a set of feasible fuel mix scenarios for each pulp production type to illustrate the potential variability in results; individual pulp producers may use fuel mixes that have different relative proportions or additional fuels. Kraft and mechanical pulp are shown separately to illustrate the differences between possible alternative pulp products. Results for each impact category are normalized to "1" for the maximum impact among the pulp products compared. The light blue bars in Figure 10 demonstrate the range in impacts that result from using the range of fuel mixes.

| Impact Category                                   | Deinked Pulp |       |       | К    | raft Pulj | 0     | Mechanical Pulp |       |       |
|---------------------------------------------------|--------------|-------|-------|------|-----------|-------|-----------------|-------|-------|
| Scenario →                                        | Base         | Mix A | Mix B | Base | Mix A     | Mix B | Base            | Mix A | Mix B |
| Purchased<br>Electricity                          | 60%          | 38%   | 92%   | 5%   | 4%        | 10%   | 83%             | 70%   | 95%   |
| Coal                                              | 14%          | 21%   | 3%    | 3%   | 2%        | 4%    | 4%              | 7%    | 1%    |
| Fuel Oil                                          | 6%           | 10%   | 1%    | 11%  | 7%        | 13%   | 2%              | 3%    | 1%    |
| Natural Gas                                       | 20%          | 31%   | 4%    | 11%  | 7%        | 13%   | 6%              | 11%   | 2%    |
| Black Liquor (kraft)<br>/Hog Fuel<br>(mechanical) | 0%           | 0%    | 0%    | 70%  | 80%       | 60%   | 5%              | 9%    | 1%    |



Figure 10 : Variation of Relative Impact based on a Range of Input Fuels

Table 11 provides a summary of the range in relative values considering variations in the mix of input fuels utilized. The dark green cells represent the pulp that consistently has the lowest relative environmental impact for each of the three input fuel scenarios evaluated. The dark blue cells represent the pulp that has the highest relative environmental impact for each of the three input fuel scenarios evaluated. If two the pulps can potentially have the lowest relative environmental impact depending on the input fuel scenario (i.e., the range of relative minimum impacts overlaps) then their cells are shaded light green. If two of the pulps can potentially have the highest relative environmental impacts overlaps) maximum then their cells are shaded light blue. If a cell is not shaded (e.g., mechanical pulp respiratory effects) then the relative impact for that pulp is neither the relative minimum or maximum of the three pulp types evaluated.

|                                  | Deinked Pulp  | Kraft Pulp | Mechanical Pulp |
|----------------------------------|---------------|------------|-----------------|
| Total CO2 eq (Fossil + Biogenic) | 0.14-0.17     | 0.99-1.06  | 0.39-0.48       |
| Fossil CO2 eq                    | 0.3-0.37      | 0.75-1.31  | 0.88-1.11       |
| Biogenic CO2 eq                  | 0.02-0.03     | 0.87-1.14  | 0.04-0.05       |
| Acidification                    | 0.24-0.31     | 0.89-1.26  | 0.79-1.01       |
| Carcinogens                      | 0.27-0.29     | 0.94-1.08  | 0.3-0.35        |
| Non Carcinogens                  | 0.335-0.343   | 0.88-1.12  | 0.36-0.38       |
| Respiratory effects              | 0.2-0.26      | 0.92-1.2   | 0.71-0.84       |
| Eutrophication                   | 0.18-0.2      | 0.98-1.06  | 0.76-0.81       |
| Ozone depletion                  | 0.277-0.292   | 0.8-1.19   | 0.57-0.71       |
| Ecotoxicity                      | 0.248-0.253   | 0.85-1.12  | 0.25-0.29       |
| Smog                             | 0.33-0.4      | 0.93-1.21  | 0.8-0.98        |
| Fossil Energy                    | 0.26-0.34     | 0.74-1.31  | 0.88-1.11       |
| Energy from Biomass              | 0.021-0.021   | 0.86-1.14  | 0.0057-0.0301   |
| Wood Use                         | 0.0011-0.0013 | 1-1        | 0.5214-0.5217   |
| Kev                              |               |            |                 |

#### Table 11: Range of relative impacts based on variations in input fuels

Pulp that consistently has the lowest relative environmental impact for each of the three input fuel scenarios evaluated

Pulps that can potentially have the lowest relative environmental impact depending on the input fuel scenario (i.e., the range of relative minimum impacts overlaps)

Pulp that consistently has the highest relative environmental impact for each of the three input fuel scenarios evaluated

Pulps that can potentially have the highest relative environmental impact depending on on the input fuel scenario (i.e., the range of relative maximum impacts overlaps)

Pulp whose impact is neither the relative minimum nor maximum of the three pulp types evaluated

**Scenario 2 Analysis:** Varying fuel mix can have a significant effect on impact results, although to a lower extent than the total pulp energy. Recovered fiber has a consistently lower environmental impact for all of the environmental impacts with the exception of ecotoxicity and Energy from Biomass. For these categories, mechanical pulp can have a relatively lower impact than recovered fiber, depending on the input fuel mix to both processes. Kraft pulp has a consistently higher impact in ten of the categories. As in scenario 1, kraft pulp has the highest relative impact for biogenic carbon dioxide equivalence, due to the large amount of biomass fuel, primarily black liquor, used to produce energy during its production. For four categories (primarily related to air emissions from energy consumption) the relative impact of kraft versus mechanical pulp depends on the fuel mix used for each production process. For these categories, mechanical pulp can have a relatively higher impact than kraft pulp, depending on the input fuel mix to both processes.

#### 4.3 Scenario 3: Variations in Impact Characterization Method

As discussed in Section 3.1, impact characterization methods translate the inventory results into environmental impact categories based on characterization factors. We applied the characterization factors listed in Table 3. In Scenario 3, we consider whether the choice of impact characterization method influences the results of the relative pulp comparison. To do this we apply two different internationally accepted impact characterization factors. Because the different impact methods use a different set of substances and characterization factors the differences in results cannot be compared quantitatively with ranges across all the impact factors as illustrated in the other sensitivity scenarios. Thus, we show the results for the displaced pulp scenario basecase to demonstrate the qualitative difference between similar characterization factors of the alternative methods.

In Figure 11, we compare the baseline method to alternative method 1, and alternative method 2. Our baseline method is a combination of TRACI 2, the Greenhouse Gas Protocol, and wood use. Alternative method 1 is the IMPACT 2002+ life cycle impact assessment method,<sup>20</sup> and alternative method 2 is the ReCipe impact assessment method<sup>21</sup> with normalization to the world population and a hierarchical perspective. The hierarchical perspective describes the average or consensus impact model as it pertains to choices on issues such as time or potential improvements to environmental management or technology to reduce environmental impacts. Appendix A includes the numeric results for both analyses.

<sup>&</sup>lt;sup>20</sup> Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+: A new life cycle impact assessment methodology. *The International Journal of Life Cycle Assessment, 8*(6), 324-330.

<sup>&</sup>lt;sup>21</sup> Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & Van Zelm, R. (2009). ReCiPe 2008: A life cycle impact assessment method which comprises harmonized category indicators at the midpoint and the endpoint level.: Report I: Characterization. *Report I: Characterization, NL, from http://lcia-recipe. net.* 



Figure 11 : Baseline method (top) vs. IMPACT 2002+ and ReCipe (bottom)

**Scenario 3 Analysis:** Although the relative impacts are slightly different than the basecase methods, deinked pulp consistently has a lower relative impact than virgin pulp produced from wood, with the exception of ReCipe terrestrial ecotoxicity. The high relative value for deinked pulp in this characterization method is due to emissions to soil of cypermethrin due to the cultivation of oil palms to make fatty acids<sup>22</sup>. This chemical also impacts the terrestrial ecotoxicity in the Impact 2002+ method, but does not have as relatively high of a characterization factor. The inventory dataset from US LCI for fatty acids assumes the use of palm oil; this material is listed as a data enhancement opportunity in Section 5.5. Based on this evaluation, we can infer than the results are not influenced by the selection of characterization method.

#### 4.4 Scenario 4: Varying Assumptions Regarding Recycling Allocation

To test the impact on the results of the selection of the cut-off method for recycling allocation, we conducted a sensitivity analysis varying the assumption for recycling allocation. In the cut-off allocation method, no upstream inputs, outputs, or emissions associated with the production of waste paper are allocated to the deinked pulp process. We tested the following scenarios:

- Deinked pulp and virgin pulp are assigned allocation factors based on the number of subsequent uses method<sup>23</sup>. The allocation for deinked pulp represents the quantity of virgin production burdens associated with production of waste paper. The allocation for virgin represents the fraction of the environmental burden associated with the virgin pulp production, where the remaining environmental burdens are avoided due to subsequent uses/and recycling. We applied allocation factors of 0.21 (0.79 avoided) for deinked pulp (assuming high grade deinking) and 0.85 (0.15 avoided) for virgin pulp (assuming a magazine end product). The allocation factors were developed by NCASI (2010)<sup>24</sup> based on factors including the fraction of products recovered, the fractions recycled into different types of products, and the yield of repulped fibers, as illustrated in ISO 14049.
- Deinked pulp is given credit for avoiding the burden of waste paper emissions from a landfill

The light blue bars in Figure 12 and 13 illustrate the variability in results for applying these scenarios to the displaced pulp (50% mechanical and 50% kraft) and kraft and mechanical pulps separately, respectively. The lower range of the light blue bars for the deinked pulp represents the credit for avoiding disposing of waste paper in a landfill. The negative relative impact results for biogenic CO2 and eutrophication are due to the significant impact of paper disposal in landfills for these two categories that is credited to deinked pulp. The upper range of the light blue bar includes allocation for some of the impacts associated with the original virgin material. The lower range of the light blue bar on the virgin pulps represents the reduction in impacts if a percentage of the burden is allocated to other products produced from recycling.

<sup>&</sup>lt;sup>22</sup> Fatty acids are used to produce fatty acid salts or soaps, which is one of the substances used in the deinking of pulp [Hannuksela and Rosencrance. Deinking Chemistry. Kemira Chemicals Inc. Available: http://www.coste46.eu.org/files/Deinking%20primer/Deinking%20Chemistry-FINAL.pdf], see Table 16.

<sup>&</sup>lt;sup>23</sup> ISO 14044:2006, Section 4.3.4.3

<sup>&</sup>lt;sup>24</sup> Application of the ISO 14049 "Number of Subsequent Uses" Allocation Procedure to the P&W Paper Product Systems, NCASI, 2010. These factors represent average conditions

The basecase virgin results represent the scenario in which no downstream recycling of the product occurs, such as for tissues.



Figure 12: Deinked Pulp vs. Displaced Virgin Pulp: Recycling allocation and credits.

Figure 13: Deinked vs. Kraft vs. Mechanical Pulp: Recycling allocation and credits.



Table 12 provides a summary of the range in relative values that result from varying recycling allocations assumptions.

|                                  | Deinked Pulp | Kraft Pulp | Mechanical Pulp |
|----------------------------------|--------------|------------|-----------------|
| Total CO2 eq (Fossil + Biogenic) | -0.19-0.33   | 0.85-1     | 0.37-0.44       |
| Fossil CO2 eq                    | 0.3-0.46     | 0.82-0.97  | 0.85-1          |
| Biogenic CO2 eq                  | -0.53-0.23   | 0.85-1     | 0.04-0.04       |
| Acidification                    | 0.24-0.42    | 0.85-1     | 0.77-0.91       |
| Carcinogens                      | 0.21-0.43    | 0.85-1     | 0.28-0.33       |
| Non Carcinogens                  | -0.04-0.48   | 0.85-1     | 0.32-0.37       |
| Respiratory effects              | 0.2-0.39     | 0.85-1     | 0.66-0.78       |
| Eutrophication                   | -1.98-0.36   | 0.85-1     | 0.67-0.79       |
| Ozone depletion                  | 0.17-0.44    | 0.85-1     | 0.55-0.64       |
| Ecotoxicity                      | 0.14-0.41    | 0.85-1     | 0.23-0.27       |
| Smog                             | 0.32-0.49    | 0.85-1     | 0.76-0.89       |
| Fossil Energy                    | 0.27-0.43    | 0.82-0.97  | 0.85-1          |
| Energy from Biomass              | 0.02-0.23    | 0.85-1     | 0.015-0.017     |
| Wood Use                         | 0-0.21       | 0.85-1     | 0.44-0.52       |

| Table 12: Range of relative impacts based on variations in recycling allocati | ion |
|-------------------------------------------------------------------------------|-----|
| assumptions                                                                   |     |

<u>Key</u>

Pulp that consistently has the lowest relative environmental impact for each of the recycling allocation scenarios evaluated

Pulps that can potentially have the lowest relative environmental impact depending on the recycling allocation scenario (i.e., the range of relative minimum impacts overlaps)

Pulp that consistently has the highest relative environmental impact for each of the recycling allocation scenarios evaluated

Pulps that can potentially have the highest relative environmental impact depending on the recycling scenario (i.e., the range of relative maximum impacts overlaps)

Pulp whose impact is neither the relative minimum nor maximum of the three pulp types evaluated

**Scenario 4 Analysis:** Deinked pulp has a lower relative impact than displaced pulp (50% mechanical, 50% kraft) for all of impact categories evaluated for all of the recycling allocation scenarios evaluated. Deinked pulp also has a consistently lower relative impact when compared against 100% kraft pulp. Deinked pulp has a relatively lower impact than 100% mechanical pulp for ten of the fourteen categories; the lowest relative impact of deinked pulp and mechanical pulp vary in the other four categories, due to the impacts from virgin kraft pulp production allocated to the deinked pulp. Kraft pulp has the highest impact in ten of the categories; the highest relative impact of kraft and mechanical pulp vary in the other four categories.

# 5 Input and Outputs: Life Cycle Inventory

This section describes the materials and energy used (the "inputs") as well as the environmental emissions (e.g., releases to air, water and soil) and wastes (the "outputs") associated with each of the processes included in the fiber acquisition through the pulp production stages for recovered deinked pulp, bleached mechanical and bleached kraft pulp. This life cycle inventory data is simply a catalog of input and output flows, we assess the associated environmental relevance in a separate step. We use this LCI data in conjunction with characterization factors to estimate the potential effects on the environment during the life cycle analysis phase, as discussed in Section 3.

This section describes the data sources used, how values were derived for each process step, and reviews the key inventory inputs and outputs that contribute significantly to the environmental impact assessment results. Life cycle inventories and the resulting assessments are limited by the availability and quality of the data. In addition, data values (such as amount and type of energy used) can vary significantly due to local conditions. We evaluated the data precision, completeness, and representativeness as detailed in Section 2.3.3. Section 5.5 provides a summary of data enhancement opportunities.

#### 5.1 Data Sources Overview

This study utilized inventory data from academic and industry studies (i.e. existing "secondary" data). We reviewed available secondary sources to apply the best available data to meet the goals and objectives of the study. We sought relevant and timely industry average data from North America. We obtained and refined the LCI data sources through the following iterative process:

- 1. Conducted a literature review to identify readily-available secondary sources for deinked, kraft and mechanical pulp life cycle inventory inputs and output materials and amounts
- 2. Developed detailed process maps to catalog the inputs and outputs associated with each pulp lifecycle process step included in the study boundaries
- 3. Refined the detailed process maps based on feedback from the stakeholder group and technical advisors
- 4. Developed draft basecase analysis results to determine the significant inputs and outputs
- 5. Evaluated these significant inputs and outputs to identify data enhancement opportunities and candidates for sensitivity analysis
- 6. Refined the LCI values to address data enhancement opportunities, if possible. Conducted sensitivity analyses to analyze the effects of variable inputs on results.

Table 13 summarizes the data sources considered in the analysis, assigning each a reference number (e.g. "S1"). Each input and/or output on the detailed process maps in Figures 14 through 18 then cites the relevant reference number. Literature and industry references cited (S1-S10 below) provided "activity" inventory data that describe the amount (e.g., MJ of fuel, mass of input chemicals ) of and type of each process step input and output. Along with direct activity inventory data, the LCI databases (USLCI and Ecoinvent) also incorporate all of the "embodied" inventory data associated with acquiring and producing the input and/or disposing of the waste products upstream or downstream of the specific pulp system process—i.e., the

"cradle-to-paper mill" inventory. For example, the amount of hydrogen peroxide used to produce deinked pulp was based on the IFEU reference (S2), while the life cycle inventory of all of the inputs and outputs associated with producing the hydrogen peroxide (such as the energy and materials used to produce this chemical) are obtained from the Ecoinvent LCI database.

| Reference<br># | Study                                                                                                                                                                                                 | Source                                                                                                                                                                                               | Processes Addressed                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| S1             | Life Cycle Inventories of<br>Packaging and Graphical<br>Paper. Part III: Paper and<br>Board. Final report ecoinvent<br>data v2.0 No. 11. Swiss<br>Centre for Life Cycle<br>Inventories, Dübendorf, CH | Ecoinvent (2007)                                                                                                                                                                                     | Waste paper sorting and collection,<br>wood production, kraft pulp production<br>and mechanical pulp production |
| S2             | Ecological comparison of<br>office papers in view of the<br>fibrous raw material (Deinked<br>Pulping Only)                                                                                            | IFEU Heidelberg, (2006)                                                                                                                                                                              | Deinked pulp production, including energy use.                                                                  |
| S3             | White Paper No 10A.,<br>Environmental Comparison-<br>Manufacturing Technologies<br>for Virgin & Recycled-Content<br>Printing & Writing Paper of<br>Bleached Kraft Pulp<br>Manufacturing Technologies  | Paper Task Force (1995)                                                                                                                                                                              | Recycled and kraft pulp production                                                                              |
| S4             | Pulp and Paper Industry<br>Bandwidth Study                                                                                                                                                            | American Institute of<br>Chemical Engineers<br>(AIChE) (2006)                                                                                                                                        | Electricity and thermal energy<br>consumption for pulp production                                               |
| S5             | Sector Report for the Pulp<br>and Paper Industry,<br>Methodology for the free<br>allocation of emission<br>allowances in the EU ETS<br>post 2012                                                      | Ecofys (2009)                                                                                                                                                                                        | Electricity and thermal energy consumption for pulp production.                                                 |
| S6             | Documentations for the<br>Paper Calculator                                                                                                                                                            | Franklin Associates<br>submitted to the<br>Environmental Paper<br>Network (2011)                                                                                                                     | Electricity and thermal energy consumption for pulp production.                                                 |
| S7             | Benchmarking Energy Use in<br>Canadian Pulp and Paper<br>Mills                                                                                                                                        | Natural Resources Canada<br>(2008)                                                                                                                                                                   | Electricity and thermal energy consumption for pulp production.                                                 |
| S8             | Life Cycle Assessment of<br>North American printing and<br>writing paper products <sup>25</sup> .                                                                                                     | National Council for Air and<br>Stream Improvement, Inc.<br>(NCASI). Prepared for<br>American Forest & Paper<br>Association (AF&PA) and<br>Forest Products<br>Association of Canada<br>(FPAC) (2010) | Life cycle inventory data for kraft pulp production.                                                            |

| Table 13: S | Summary of | Secondary | Data | Sources |
|-------------|------------|-----------|------|---------|
|-------------|------------|-----------|------|---------|

<sup>&</sup>lt;sup>25</sup> National Council for Air and Stream Improvement (NCASI). 2010. Life cycle assessment of North American printing and writing paper products. Final report prepared for American Forest and Paper Association (AF&PA), Forest Products Association of Canada (FPAC). June 18, 2010. 292 p.

| Reference<br># | Study                                                                                                                                                | Source                                                                                                             | Processes Addressed                                                                                                                                                                                                                                                                                                                                     |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S9             | Energy and Environmental<br>Profile of the US Pulp and<br>Paper Industry                                                                             | US Department of Energy:<br>Energy Efficiency and<br>Renewable Energy<br>Industrial Technologies<br>Profile (2005) | Electricity and thermal energy consumption for pulp production.                                                                                                                                                                                                                                                                                         |
| S10            | Life Cycle Environmental<br>Performance of Renewable<br>Materials in Context of<br>Residential Building<br>Construction: Phase I<br>Research Report. | Bowyer et al (2004)                                                                                                | Life cycle inventory for wood extraction<br>used for virgin fiber acquisition                                                                                                                                                                                                                                                                           |
| S11            | US Life-Cycle Inventory<br>Database (USLCI) <sup>26</sup>                                                                                            | National Renewable Energy<br>Laboratory (NREL)                                                                     | The USLCI database provides<br>individual gate-to-gate, cradle-to-gate<br>and cradle-to-grave accounting of the<br>energy and material flows into and out<br>of the environment that are associated<br>with producing a material, component,<br>or assembly in the U.S. Appendix B<br>lists the specific processes applied in<br>the analysis.          |
| S12            | Ecoinvent v2.2 database <sup>27</sup>                                                                                                                | Swiss Centre for Life Cycle<br>Inventories                                                                         | The ecoinvent database provides<br>individual gate-to-gate, cradle-to-gate<br>and cradle-to-grave accounting of the<br>energy and material flows into and out<br>of the environment that are associated<br>with producing a material, component,<br>or assembly internationally. Appendix<br>B lists the specific processes applied<br>in the analysis. |

#### 5.2 Inputs and Outputs Associated with Pulp Processes

This section illustrates the specific inputs and outputs associated with each pulp process step for deinked and virgin pulp (for both kraft and mechanical pulp). These detailed process maps are shown in Figures 14 through 18. These process maps include the "cradle-to-paper mill" processes associated with the three different types of pulp production and exclude the magazine production (including paper production), use and disposal phases, as discussed in Section 2.1. Fuel and energy inputs are shown in purple, other chemical and material inputs are shown in blue. Emissions and wastes are shown in red. Direct process emissions (such as organic matter emissions to water causing BOD-5, and particulate emissions) specified in the references are listed on the process maps. The process maps list the generic, but not the specific emissions to air, water and soil from fuel combustion and "embodied" emissions from input fuel, energy and material acquisition and manufacture separately on the process maps; these emissions and inputs are listed generically (e.g., emissions to air, water and soil from diesel combustion) because the associated inputs and output can contain hundreds of substances. These emissions and inputs are accounted for in the inventory and obtained from the USLCI and Ecoinvent lifecycle database process datasets detailed in Appendix A. The process maps identify the potential sources of the inventory activity data corresponding to the references in Table 13 (e.g "S1"). Section 5.3 details the "best available" specific data

<sup>&</sup>lt;sup>26</sup> National Renewable Energy Laboratory. US Life-Cycle Inventory. Available: http://www.nrel.gov/lci/database/

<sup>&</sup>lt;sup>27</sup> Ecoinvent database version 2.2. Available: http://www.ecoinvent.org/.

selected for the analysis from these references based on the study objectives, scope and data requirements.

| High quality waste naner                      |                                                                           |                                                                                                                              |
|-----------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| ngn quairy waste paper                        | 1R. High-Grade<br>Waste Paper                                             | Allocation/Credits from Recycling                                                                                            |
|                                               | Waste Paper @ Disposal                                                    |                                                                                                                              |
| Diesel                                        | 2Ra. Waste Paper<br>Collection via<br>Municipal Waste<br>Collection truck | Emissions to air, water and soil fro<br>diesel production & combustion                                                       |
|                                               | Waste Paper @ collection<br>center                                        |                                                                                                                              |
| Diesel                                        | 2Rb. Transport to<br>Sorting Plant via<br>Truck                           | Emissions to air, water and soil fro<br>diesel production & combustion                                                       |
| Electricity<br>Fuel Oil<br>Diesel (transport) | Collected Paper @<br>Sorting Facility<br>3R. Waste Paper                  | Emissions to air, water and soil fro                                                                                         |
| Steel and Sheet rolling<br>Lubricating Oil    | Sorting Process                                                           | -input material production<br>Waste to Incineration:                                                                         |
|                                               | Sorted Recovered Paper @<br>Sorting Facility                              | Waste rejects from sorting-plastic<br>foils & adhesive tapes, plastics,<br>textiles, flakes/fibers, wood metall<br>compounds |
|                                               | 4R. Transport to<br>Recovered Pulp<br>Mill via truck &<br>train           | Emissions to air, water and soil from<br>diesel production & combustion                                                      |
|                                               | Sorted Recovered Paper @                                                  | )                                                                                                                            |
|                                               | DIP Mill                                                                  |                                                                                                                              |

#### Figure 14 : Deinked Pulp Inputs and Outputs by Unit Process: Fiber Acquisition

# Figure 15 : Deinked Pulp Inputs and Outputs by Unit Process: Pulp Production and Transport to Mill

| Deinked Pulp Produ                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ction                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sorted Recovered<br>Paper @ Mill                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Heat & Energy <sup>\$1-59</sup> :<br>Electricity<br>Natural Gas<br>Fuel Oil<br>Coal<br>Combusted waste products<br>(paper)<br>Diesel (transport) <sup>\$1</sup><br>Water <sup>\$1,\$2</sup><br>Hydrogen Peroxide <sup>\$1,\$2</sup><br>Sodium Hydroxide <sup>\$1,\$2</sup><br>Sodium Hydroxide <sup>\$1,\$2</sup><br>Soluble Sodium <sup>\$2</sup><br>Soluble Sodium <sup>\$2</sup><br>Sodium Dithionite <sup>\$1</sup><br>Inorganic Chemicals <sup>\$1</sup><br>Sodium Silicate <sup>\$1</sup> | <ul> <li>5R. Deinked Pulp<br/>Production</li> <li>Deinking of<br/>waste paper</li> <li>Energy<br/>production on<br/>site</li> <li>Internal waste-<br/>water<br/>treatment</li> <li>Transport of<br/>input<br/>chemicals to<br/>mill/ waste to<br/>disposal</li> </ul> | Emissions to air, water and soilfrom<br>-fuel production & combustion<br>-electricity generation<br>-input material production<br>Process Air Emissions:<br>Particulates <sup>52</sup><br>VOCs <sup>53</sup><br>Total Reduced Sulfur <sup>53</sup><br>Hazardous Air Pollutants <sup>53</sup><br>Process Emissions to Water:<br><u>Heat</u><br>Wastewater <sup>52,53</sup><br>AOX <sup>\$1,52,53</sup><br>BOD-5 <sup>\$1,52,53</sup><br>COD <sup>\$1,52,53</sup><br>Nitrogen <sup>\$1,52</sup><br>Phosphorus <sup>\$1,52</sup><br>Total Organic Carbon <sup>\$1</sup><br>Suspended Solids <sup>\$1,53</sup><br><u>Emissions to Soil</u><br>Waste to Landfilt<br>Deinking sludge <sup>\$1</sup><br>Municipal Solid Waste <sup>\$1</sup><br>Total Solid waste <sup>\$3</sup> |
| Diesel <sup>sa</sup><br>Data Gap                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DIP @ Pulp Mill<br>6R. Transport<br>to Paper Mill<br>via Truck<br>DIP @ Magazine<br>Production                                                                                                                                                                        | Emissions to air, water and soil from diesel production & combustion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| INPUTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       | OUTPUTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### Figure 16 : Virgin Pulp Inputs and Outputs by Unit Process: Fiber Acquisition



#### INPUTS

OUTPUTS

# Figure 17 : Virgin Pulp Inputs and Outputs by Unit Process: Bleached Kraft Pulp Manufacturing

#### **Kraft Pulp Production**

Heat & Energy<sup>51-59</sup>: Electricity Natural Gas Fuel Oil Coal Combusted waste products (bark, black liquor, sludge)

#### Material Inputs:

Water<sup>51,58</sup>

Quick lime<sup>51,38</sup> Carbon Dioxide Liquid<sup>51</sup> Hydrogen Peroxide<sup>51,38</sup> EDTA<sup>53</sup> Sulphuric Acid<sup>51,38</sup> Methanol<sup>51,58</sup> Magnesium sulphate<sup>51</sup> Nitrogen<sup>51</sup> Sodium chloride<sup>51</sup> Sodium chlorate<sup>51,58</sup> Sodium hydroxide<sup>51,58</sup> Liquid Oxygen<sup>51,38</sup> Liquid Ozone<sup>51</sup> Sulphur Dioxide<sup>51</sup> Malusil (Talc) <sup>51,58</sup>

Data Gap

INPUTS

Hardwood/Softwood Logs & Chips @ Mill

### 6V1. Kraft Pulp Production

- Chemical pulping
- Bleaching
- Drying
- Energy production on site
- Recovery cycles of chemicals
- Internal waste water treatment
- Transport of input chemicals to mill/waste to disposal

Emissions to air, water and soil from -fuel production & combustion -electricity generation -input material production<sup>51</sup>

Process Air Emissions: Fossil & Biogenic CO<sub>2</sub> <sup>51,58</sup> Nitrogen Oxides<sup>51,58</sup> Sulfur Dioxide<sup>51,58</sup> Hydrogen sulfide<sup>51,58</sup> Particulates (<2.5 & >10) <sup>51,53</sup> Aceta Idehyde<sup>58</sup> Ammonia<sup>58</sup> Hazardous Air Pollutants, VOCs, TRS<sup>53</sup> SO2, NOx, CO, Hydrogen Sulfide

Process Emissions to Water: Wastewater<sup>58,53</sup> <u>Heat</u> AOX<sup>51,53,58</sup> BOD-5 <sup>51,53</sup> COD <sup>51,53</sup> Total Organic Carbon <sup>51</sup> Nitrogen <sup>51,58</sup> Phosphorus <sup>51,58</sup> Suspended Solids <sup>51,53,58</sup> Arsenic, Barium, Chromium, Copper, Lead, Manganese, Mercury, Nickel, Vanadium, Zinc<sup>58</sup>

Emissions to Soil: Arsenic, Barium, Chromium, Copper, Lead, Manganese, Mercury, Nickel, Vanadium, Zinc<sup>58</sup>,

Waste to Landfill Kraft WWTP sludge<sup>58</sup> Hazardous waste (to underground deposit in salt mine)<sup>51,38</sup> Wood ash mixture<sup>51</sup> Limestone reside<sup>51</sup> Green Liquor Dregs<sup>51</sup> Municipal solid waste<sup>51</sup> Other waste<sup>58</sup> Total Solid waste<sup>53</sup>

OUTPUTS

Pulp @ Magazine

Pulp @ Pulp Mill

Transport to Paper

Production

Mill via Truck

# Figure 18 : Virgin Pulp Inputs and Outputs by Unit Process: Bleached Mechanical Pulp Manufacturing

| Mechanical Pulp Pr                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                            | Hardwood/Softwood Logs<br>& Chips @ Mill                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Heat & Energy <sup>S1-59</sup> :<br>Fuel Oil<br>Combusted waste products<br>(hog fuel/wood waste)<br>Diesel (transport)<br>Electricity<br>Water<br>Hydrogen Peroxide <sup>R1</sup><br>Sodium Silicate <sup>R1</sup><br>EDTA <sup>R1</sup><br>Sodium Hydroxide <sup>R9</sup><br>Hydrogen Peroxide <sup>R9</sup><br>Dithionite <sup>R9</sup> | <ul> <li>6V2. Groundwood<br/>pulp production</li> <li>Mechanical<br/>pulping</li> <li>Bleaching</li> <li>Drying</li> <li>Energy<br/>production on-<br/>site</li> <li>Internal waste<br/>water<br/>treatment</li> <li>Transport of<br/>input<br/>chemicals to<br/>mill/waste to<br/>disposal</li> </ul> | Emissions to air, water and soil from<br>-fuel production & combustion<br>-on-site waste material incineration<br>-electricity generation<br>-input material production <sup>R1</sup><br>Air Emissions:<br>Nitrogen Oxides <sup>R1</sup><br>Emissions to Water:<br>Wastewater <sup>R1,R3</sup><br><u>Heat</u><br>BOD-5 <sup>R1,R3</sup><br>COD <sup>R1,R3</sup><br>Nitrogen <sup>R1</sup><br>Phosphorous <sup>R1</sup><br>Suspended Solids <sup>R1,R3</sup><br><u>Emissions to Soil</u><br>Waste to Landfilt<br>Wood ash mixture <sup>R1</sup><br>Municipal solid waste <sup>R1</sup><br>Total Solid waste <sup>R3</sup><br>Waste to Incineration:<br>Paper, plastics, steel, textiles, wood <sup>R1</sup> |
| Diesel <sup>R1</sup>                                                                                                                                                                                                                                                                                                                       | Groundwood<br>pulp @ Pulp Mill<br>Transport to<br>Paper Mill via<br>Truck                                                                                                                                                                                                                              | Emissions to air, water and soil from diesel production & combustion <sup>81</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u>Data Gap</u>                                                                                                                                                                                                                                                                                                                            | Groundwood Pulp (<br>Production                                                                                                                                                                                                                                                                        | @ Magazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

OUTPUTS

INPUTS

#### 5.3 "Best Available" Data Sources Used in the Analysis

Tables 14 and 15 summarize the activity data sources and assumptions used to develop the life cycle inventories for deinked, kraft and mechanical pulp. Each table also includes comments on the quality and relevance of the inventory data. Where available, we prioritized North America-specific data published within the last ten years. In Section 4, we applied a sensitivity analysis to examine the range of impacts due to input values that have a significant variability, such as pulp production energy use and input fuel mix to evaluate if the potential range in input values influences the study results.

| #   | Process Step                                                   | Activity data sources                                                      | Assumptions and Comments on<br>Quality/Relevance                                                                                                                                                                                            |
|-----|----------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1R  | Waste Paper<br>input                                           | Ecoinvent                                                                  | Cut-off allocation includes no burden/impacts for<br>waste paper prior to collection. See Section 4.4<br>for Sensitivity Analysis of various recycling<br>allocation approaches<br>1.025 kg of waste paper produces 1 kg of sorted<br>paper |
| 2Ra | Waste Paper<br>Collection via<br>Municipal<br>Collection truck | Distance to collection<br>center (50km): Ecoinvent                         | No North American secondary inventory data<br>identified for these stages. Emissions from<br>transportation fuel use can significantly contribute                                                                                           |
| 2Rb | Transport to<br>Sorting Plant<br>via Truck                     | Distance to sorting plant (200km): Ecoinvent                               | to multiple impact categories. I ransport<br>distances can be highly variable depending on<br>local conditions.*                                                                                                                            |
| 3R  | Waste paper sorting                                            | Material Inputs, Energy Use and Wastes: Ecoinvent                          |                                                                                                                                                                                                                                             |
| 4R  | Transport to<br>Sorting Plant<br>via Truck                     | Distance to pulp mill<br>(400km via rail or 100km<br>via truck): Ecoinvent |                                                                                                                                                                                                                                             |
| 5R  | DIP Pulp<br>Production                                         | Material Inputs: IFEU                                                      | No North American secondary inventory data<br>identified for material inputs. Sodium dithionite<br>and fatty acids can significantly contribute to<br>some impact categories.*<br>1.38 kg of sorted waste paper yields 1 kg of pulp.        |
|     |                                                                | Energy Use: Average of<br>DOE, IFEU, and Natural<br>Resources Canada       | Electricity use is responsible for the majority of<br>impacts across a range of categories. Values<br>can have high variability- see Sections 4.1 and<br>4.2 for Sensitivity Analysis of total pulp energy<br>and energy fuel mix           |
|     |                                                                | Wastes: Ecoinvent                                                          | Data only available for process that includes<br>paper production from European data.<br>Disposition of deinked sludge can significantly<br>contribute to some categories*.                                                                 |

Table 14: Data Sources Used in the Deinked Pulp Analysis

| #  | Process Step                            | Activity data sources                                                             | Assumptions and Comments on                                                                                                                                                                                                                                                   |
|----|-----------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                         |                                                                                   | Quality/Relevance                                                                                                                                                                                                                                                             |
|    |                                         | Process direct emissions to water: IFEU                                           | Limited information on emissions to water<br>available from U.S. pulp producers COD from<br>releases of organic matter to water, phosphorous<br>and nitrogen emissions contribute to<br>eutrophication. Chlorophenols used as a proxy<br>for AOX <sup>*</sup> . <sup>28</sup> |
|    |                                         | Process direct emissions to<br>air: From fuel combustion<br>emissions             | See Sections 4.1 and 4.2 for Sensitivity Analysis of total pulp energy and energy fuel mix.                                                                                                                                                                                   |
| 6R | Transport to<br>Paper Mill via<br>Truck | Distance to paper mill<br>(1550km) : Environmental<br>Paper Network <sup>29</sup> | Based on an average of distances deinked pulp<br>mills to paper manufactures. Distances can be<br>highly variable depending on local conditions.<br>Emissions from fuel use can significantly<br>contribute to multiple impact categories.*                                   |

\*Data enhancement opportunity (See Table 16)

 <sup>&</sup>lt;sup>28</sup> According to the CPCB, chlorophenols are a type of AOX formed in the pulping process: Central Pollution Control Board. 2007. Development of AOX Standards for Large Scale Pulp and Paper Industries. Ministry of Environment and Forests. Available: http://cpcb.nic.in/newitems/34.pdf
 <sup>29</sup> Environmental Paper Network (2008) *Pulpwatch*. Pulpwatch.org. [Accessed May, 2012]

| #   | Process Step              | Activity data sources                                                      | Assumptions and Comments on<br>Quality/Relevance                                                                                                                                                                                                                                                                                                                         |
|-----|---------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2V  | Wood Extraction           | Hardwood input materials and fuels: USLCI                                  | Average forest intensity for North East/North Central US regions <sup>30</sup> ; 650kg/m3 dry density                                                                                                                                                                                                                                                                    |
|     |                           | Softwood input materials and fuels: USLCI                                  | Average forest intensity for South East and Pacific North West regions <sup>31</sup> ; 450kg/m3 dry density                                                                                                                                                                                                                                                              |
| 3V  | Transport to<br>Saw Mill  | Distance to saw mill:<br>USLCI                                             | Includes weight of bark and water content*                                                                                                                                                                                                                                                                                                                               |
| 4V  | Sawmill                   | Energy Use: USLCI                                                          | Particulate process emissions and air emissions from fuel combustion                                                                                                                                                                                                                                                                                                     |
| 5V  | Transport to<br>Pulp Mill | Distance to pulp mill:<br>USLCI                                            | Transport of green logs with 87% moisture content and 10% bark over 125km.                                                                                                                                                                                                                                                                                               |
| 6V1 | Kraft Pulp<br>Production  | Input wood: Paper Task<br>Force <sup>32</sup>                              | Yield of bleached kraft pulp from dry wood = 45%                                                                                                                                                                                                                                                                                                                         |
|     |                           | Energy Use, Input<br>Materials and Wastes:<br>NCASI                        | North America average industry data for<br>bleached kraft production. Energy values can<br>have high variability- see Sections 4.1 and 4.2 for<br>Sensitivity Analysis of total pulp energy and<br>energy fuel mix                                                                                                                                                       |
|     |                           | Process direct emissions<br>to water: NCASI, COD:<br>Ecoinvent             | Chlorophenols used as a proxy for AOX*. <sup>33</sup> COD values from Ecoinvent are average of TCF and ECF sulphate pulp data*.                                                                                                                                                                                                                                          |
|     |                           | Process direct emissions<br>to air:<br>NCASI, fuel combustion<br>emissions | Black liquor combustion emissions from multiple<br>sources. Biogenic carbon dioxide emissions from<br>The Climate Registry <sup>34</sup> , carbon monoxide,<br>hydrogen sulfide, nitrogen oxides, PM10, sulfur<br>oxides, VOCs from Larson <sup>35</sup> and other black<br>liquor air emissions from wood waste combustion<br>(used as a proxy, consistent with NCASI). |
|     |                           | Process direct emissions to soil: NCASI                                    | Arsenic, barium, chromium, copper, lead, manganese, mercury, nickel, vanadium, zinc                                                                                                                                                                                                                                                                                      |

Table 15: Data Sources Used in the Virgin Pulp Analysis

<sup>30</sup> Elaine Oneil, Leonard R. Johnson, Bruce Lippke, James McCarter, Marc McDill, Paul Roth, James Finley (2010) Life-Cycle Impacts of Inland West And NE/NC Forest Resources. Wood and Science. Volume: 0. Issue: TBA. Page: TBA. Madison WI US. <sup>31</sup> SE/NW region reference

U.S. Department of Energy and the American Forest and Paper Association.

<sup>&</sup>lt;sup>32</sup> Paper Task Force (1995), White Paper No 10A., Environmental Comparison-Manufacturing Technologies for Virgin & Recycled-Content Printing & Writing Paper of Bleached Kraft Pulp Manufacturing Technologies. <sup>33</sup> According to the CPCB, chlorophenols are a type of AOX formed in the pulping process: Central Pollution Control

Board. 2007. Development of AOX Standards for Large Scale Pulp and Paper Industries. Ministry of Environment and Forests. Available: http://cpcb.nic.in/newitems/34.pdf <sup>34</sup> The Climate Registry. (2012). *General Reporting Protocol. Version 2.0.* [Available online]

http://www.theclimateregistry.org/resources/protocols/general-reporting-protocol/

<sup>&</sup>lt;sup>35</sup> Larson (2006) A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry.

| #   | Process Step                            | Activity data sources                                                     | Assumptions and Comments on<br>Quality/Relevance                                                                                                                                                                               |
|-----|-----------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                         |                                                                           | results available for kraft pulp, but not available<br>for deinked or mechanical pulp. Therefore these<br>were not included in the results for consistency.                                                                    |
| 6V2 | Groundwood<br>Pulp Production           | Wood Yield: Paper Task<br>Force <sup>36</sup>                             | Yield of bleached mechanical pulp from dry wood<br>= 90%                                                                                                                                                                       |
|     |                                         | Material inputs and wastes: Ecoinvent                                     | Data from a Swiss and German LCA study                                                                                                                                                                                         |
|     |                                         | Energy Use: Average of DOE, Natural Resources Canada and Ecoinvent        | Energy use responsible for the majority of<br>impacts across a range of categories. Values<br>can have high variability- see Sections 4.1 and<br>4.2 for Sensitivity Analysis of total pulp energy<br>and energy fuel mix      |
|     |                                         | Process direct emissions<br>to water: Ecoinvent*                          | Chlorophenols used as a proxy for AOX*. Based on average Swedish data.                                                                                                                                                         |
|     |                                         | Process direct emissions<br>to air: Based on fuel<br>combustion emissions | Electricity use responsible for the majority of<br>impacts across a range of categories. Values<br>can have high variability- see Sections 4.1 and<br>4.2 for Sensitivity Analysis of total pulp energy<br>and energy fuel mix |
| 7V  | Transport to<br>Paper Mill via<br>Truck | Distance to mills: US<br>Census <sup>37</sup>                             | Assumed 90% integrated (0km transport<br>distance) 10% non-integrated <sup>38</sup> (1030km<br>transport distance kraft; 1460km transport<br>distance mechanical pulp)*                                                        |

\*Data enhancement opportunity (See Table 16)

 <sup>&</sup>lt;sup>36</sup> Paper Task Force (1995), White Paper No 10A., Environmental Comparison-Manufacturing Technologies for Virgin & Recycled-Content Printing & Writing Paper of Bleached Kraft Pulp Manufacturing Technologies.
 <sup>37</sup> U.S. Department of Transportation, Research and Innovative Technology Administration, Bureau of Transportation Statistics and U.S. Census Bureau, 2007 Commodity Flow Survey.
 <sup>38</sup> Information acquired from conversation with NCASI.

The specific lifecycle database process datasets applied from USLCI and Ecoinvent are detailed in Appendix B.

#### 5.4 Significant Inventory Characterization Substances: Contribution Analysis

After we created an initial inventory, we calculated draft basecase results to determine which inputs and outputs significantly impacted the results. In this contribution analysis, we investigated the inventory substances that have the highest relative contribution in each impact *category* to achieve the following to:

- Assess the life cycle inventory for potentially significant data gaps and consistency, and
- Identify processes associated with the significant inventory substances to target potential actions, sensitivity analysis and data enhancement opportunities.

Figure 19 lists the significant inventory characterization substances by impact category and percent contribution to the total impacts of kraft, mechanical, and deinked pulp for the initial model inventory. The results for each pulp type are specific to the relative contributions of substances within the individual pulp processes only and should **NOT** be used in direct comparisons between pulp products. For example, biogenic CO2 emissions have a significant contribution to the biogenic CO2e impact category for all three types of pulp, but the relative impact of biogenic CO2e is significantly higher for virgin pulp, as illustrated in Figure 5. Each category can include up to hundreds of substances that contribute to the associated environmental impact. Figure 19 lists those substances that contributed 2% or more to any of the pulp products impacts for a given category. Inventory substances such as sulfur dioxide can contribute to more than one impact category and is weighted based on its relative contribution to the specific category.

We compared the characterization results across the different pulp products to identify potential inconsistencies by examining those substances that are significant in one or more pulp processes, but not in the other(s). This analysis identified data gaps as well as situations where one pulp process includes a unique input or process that results in significant impacts. For example:

#### Data Gaps:

- Soil emissions of chromium and zinc have a significant contribution to kraft pulp carcinogens, non-carcinogens and ecotoxicity impacts; however corresponding soil emissions for mechanical and deinked pulp were not available. Thus, we did not include soil emissions in the revised life cycle inventory for consistency, and documented soil emissions as a data gap
- COD from organic matter releases to water was lower for kraft pulp than mechanical pulp. We determined that our data source for Kraft paper didn't comprehensively allocate COD to mill discharge, and so we integrated an additional study that appropriately allocates COD.

#### Significant Substances:

- Acrolein (non-carcinogen), CFC-10 (ozone depletion) and particulates (respiratory effects) have a significant contribution to kraft impacts compared to mechanical and deinked pulp. This is caused by wood waste combustion which is used in this study as a proxy for Black Liquor Combustion. Thus, we refined the black liquor emissions inventory based on combustion emission values found in Larson (2006)<sup>39</sup>
- Sulfur dioxide (SO<sub>2</sub>) emissions have a significant contribution to mechanical and deinked pulp respiratory effects, but not to kraft pulp. This difference is due to the fact that SO<sub>2</sub> emissions result primarily from electricity use. Mechanical and deinked pulps consume a larger amount of purchased electricity than kraft pulp. Electricity use can be flagged for reduction opportunities in mechanical and deinked pulp operations reductions in SO<sub>2</sub> are desired for these products. Zinc air emissions have a high contribution to deinked pulp non-carcinogens, but not kraft or mechanical pulp. This is caused by the zinc used to produce sodium dithionite, a chemical used in deinking in the recovered fiber pulping process. Sodium dithionite can be flagged as a key contributor and a reduction opportunity for deinked pulp producers.

<sup>39</sup> Larson (2006) A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry. U.S. Department of Energy and the American Forest and Paper Association.

# Figure 19 : Significant Inventory Characterization Parameters associated with the Preliminary Life Cycle Inventory

| Impact Category                         | Key Contributor                     | Media | Kraft | Mechanical | Recovered | -50/          |
|-----------------------------------------|-------------------------------------|-------|-------|------------|-----------|---------------|
| Fossil CO2e (Global                     | Carbon Dioxide                      | Air   |       |            | 94%       | <5%<br>5%-10% |
| Warming Potential)                      | Methane                             | Air   | 6%    | 5%         | 5%        | 10%-25%       |
|                                         | Carbon Dioxide                      | Air   |       |            | 90%       | 25%-50%       |
| Biogenic CO2e                           | Methane                             | Air   | 2%    | 30%        | 10%       | >50%          |
|                                         | Chromium VI                         | Water | 67%   | 67%        | 77%       |               |
| Human Health:                           | Chromium                            | Soil  | 13%   | 0%         | 0%        |               |
| Carcinogens*                            | Chromium                            | Water | 13%   | 13%        | 10%       |               |
| , i i i i i i i i i i i i i i i i i i i | Chromium, ion                       | Water | 3%    | 14%        | 10%       |               |
|                                         | Barium                              | Water | 31%   | 38%        | 24%       |               |
|                                         | Mercury                             | Air   | 24%   | 35%        | 21%       |               |
|                                         | Arsenic, Ion                        | Water | 12%   | 13%        | 21%       |               |
|                                         | Zinc                                | Soil  | 10%   | 0%         | 0%        |               |
| Human Health:                           | Acrolein                            | Air   | 9%    | 2%         | 0%        |               |
| Non-Carcinogens*                        | Arsenic                             | Soil  | 3%    | 0%         | 0%        |               |
|                                         | Lead                                | Air   | 2%    | 2%         | 0%        |               |
|                                         | Zinc                                | Air   | 0%    | 0%         | 30%       |               |
|                                         | Lead                                | Water | 0%    | 4%         | 0%        |               |
|                                         | Barium                              | Water | 35%   | 49%        | 37%       |               |
|                                         | Zinc                                | Soil  | 22%   | 0%         | 0%        |               |
|                                         | Silver                              | Water | 12%   | 20%        | 12%       |               |
|                                         | Chromium VI                         | Water | 12%   | 12%        | 16%       |               |
|                                         | Zinc                                | Water | 3%    | 3%         | 2%        |               |
|                                         | Copper                              | Soil  | 3%    | 0%         | 0%        |               |
| Ecotoxicity*                            | Vanadium                            | Water | 2%    | 0%         | 0%        |               |
|                                         | Chromium                            | Soil  | 2%    | 0%         | 0%        |               |
|                                         | Chromium                            | Water | 2%    | 2%         | 2%        |               |
|                                         | Antimony                            | Water | 0%    | 8%         | 18%       |               |
|                                         | Arsenic, Ion                        | Water | 0%    | 0%         | 3%        |               |
|                                         | Zinc                                | Air   | 0%    | 0%         | 3%        |               |
|                                         | Chromium, ion                       | Water | 0%    | 2%         | 2%        |               |
| Impact Category                         | Key Substance                       | Media | Kraft | Mechanical | Recovered |               |
|                                         | BOD5                                | Water | 30%   | 19%        | 4%        |               |
|                                         | Phosphate                           | Water | 29%   | 11%        | 27%       |               |
| Eutrophication                          | Nitrogen                            | Water | 11%   | 3%         | 6%        |               |
| (Excess                                 | Phosphorus                          | Water | 11%   | 3%         | 5%        |               |
| nutrients/plant                         | COD                                 | Water | 9%    | 53%        | 28%       |               |
| growth)                                 | Nitrogen oxides                     | Air   | 7%    | 8%         | 10%       |               |
|                                         | Nitrate                             | Water | 2%    | 2%         | 17%       |               |
|                                         | Ammonium, ion                       | Water | 0%    | 2%         | 2%        |               |
|                                         | CFC-10                              | Air   | 87%   | 21%        | 9%        |               |
|                                         | Halon 1211                          | Air   | 8%    | 59%        | 49%       |               |
|                                         | CFC-114                             | Air   | 2%    | 4%         | 4%        |               |
| Ozone depletion                         | R-40                                | Air   | 2%    | 6%         | 7%        |               |
|                                         | Halon 1301                          | Air   | 0%    | 7%         | 25%       |               |
|                                         | CFC-12                              | Air   | 0%    | 0%         | 2%        |               |
|                                         | Halon 1001                          | Air   | 0%    | 0%         | 3%        |               |
| Acidification                           | Sultur dioxide                      | Air   | 63%   | 67%        | 61%       |               |
| (Acid rain)                             | Nitrogen oxides                     | Air   | 28%   | 27%        | 32%       |               |
| , ,                                     | Sultur oxides                       | Air   | 3%    | 4%         | 4%        |               |
|                                         | Particulates, > 2.5 um, and < 10 um | Air   | 70%   | 11%        | 11%       |               |
|                                         | Sultur dioxide                      | Air   | 27%   | 81%        | 70%       |               |
| Respiratory Effects                     | Nitrogen oxides                     | Air   | 2%    | 6%         | 7%        |               |
|                                         | Particulates, > 10 um               | Air   | 0%    | 0%         | 0%        |               |
|                                         | Particulates, < 2.5 um              | Air   | 0%    | 0%         | 10%       |               |
| Smog (Ground level                      | Nitrogen oxides                     | Air   | 97%   | 94%        | 96%       |               |
| air pollution)                          | Isoprene                            | Air   | 0%    | 5%         | 3%        |               |
| ,                                       | VOCs                                | Air   | 0%    | 0%         | 0%        |               |

#### 5.5 Data Enhancement Opportunities

During the life cycle inventory, impact assessment and subsequent contribution analyses we evaluated data quality precision, completeness and representativeness. We identified several data enhancement opportunities that could be leveraged to refine the analysis and provide more accurate, precise results; these recommendations are summarized in Table 16.

| Data Enhancement Opportunity                                                                                                                        | Significance                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Obtain values for emissions to soil for deinked and mechanical pulp                                                                                 | Available inventory data for emissions to soil for kraft pulping<br>contributed to ecotoxicity, carcinogen and non-carcinogen<br>impact categories                                                                                             |
| Refine the type of and source for fatty acids used in deinked pulp production                                                                       | Fatty acid input is a significant input to several impacts due primarily to the fact that the available U.S. LCI dataset includes the impact of cultivating palm oil for vegetable oil, which may not be used in deinked pulping <sup>40</sup> |
| Examine the type and disposition of deinking pulp waste                                                                                             | De-inked pulp waste is a significant contributor, because the Ecoinvent dataset assumes it is solidified using cement. We have not been able to identify data to validate this assumption, but advise that this may vary by pulp producer.     |
| Refine values for water process<br>emissions for mechanical pulp and<br>kraft pulp                                                                  | Process organic matter releases to water causing COD and BOD drive pulp eutrophication impacts                                                                                                                                                 |
| Refine proxy values for pulp water process emissions of AOX                                                                                         | Inventory data for all three pulps considered included releases of AOX. Chlorophenols, which contributed significantly to the ecotoxicity results, were used as proxy chemical, as the TRACI methodology does not include AOX.                 |
| Refine values for sodium dithionate<br>and other bleaching chemical input for<br>pulp production                                                    | Zinc process emissions from the production of sodium dithionate<br>(used for bleaching) drive non-carcinogen impact values, and<br>can affect if mechanical or kraft pulp has a higher relative<br>impact than deinked pulp.                   |
| Specific energy consumption and fuel<br>mix values are key to accurately<br>estimate local mill impacts                                             | Energy contributes the majority of impacts across a range of categories; variations in total energy and/or fuel mix can significant impact pulp impacts, as illustrated in Sections 4.1 and 4.2.                                               |
| Refine estimates for pulp yield and conduct sensitivity analysis                                                                                    | Pulp yield information identified in the secondary data sources may be outdated                                                                                                                                                                |
| Refine estimates for transportation<br>distances associated with waste<br>paper collection and wood acquisition<br>and conduct sensitivity analysis | Waste paper collection can have significant impact across a range of categories. Likewise, wood acquisition distances can be highly variable.                                                                                                  |

| Table | 16: | Data | Enhancement  | Op | portunities |
|-------|-----|------|--------------|----|-------------|
| Table | 10. | Data | Limanocincin |    | portunitico |

<sup>&</sup>lt;sup>40</sup> Hannuksela and Rosencrance. *Deinking Chemistry.* Kemira Chemicals Inc. Available: http://www.coste46.eu.org/files/Deinking%20primer/Deinking%20Chemistry-FINAL.pdf

| Data Enhancement Opportunity                                                                                                                                                                                                                                                    | Significance                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refine estimates for distances<br>associated with pulp to mill<br>transportation and conduct sensitivity<br>analysis. Apply specific transportation<br>distances for transport of specific pulp<br>to specific mill to accurately estimate<br>local mill impacts for using pulp | Impacts due to pulp transport to the mill can be highly variable<br>and can have a significant impact for a range of impact<br>categories, particularly for deinked pulp. Pulp transport is not as<br>significant for virgin pulp, due to the relatively higher impact of<br>other system processes. For relative impacts of deinked, kraft,<br>and mechanical pulp, see Figures 6, 7, and 8, respectively. |

# 6 Summary and Conclusions- Interpretation

We conducted a life cycle assessment to evaluate the relative impacts of deinked pulp derived from waste paper versus the impacts of pulp produced from virgin wood sources that would be displaced by the use of the deinked pulp to address the question: *Is it better for the environment to use recovered fiber for magazines versus virgin fiber in isolation?* As illustrated in Section 4, the analysis and multiple sensitivity analyses demonstrated that yes, recovered fiber is better for the environment when it displaces 50% kraft and 50% mechanical pulp.

Table 17 and Figure 20 summarizes the relative impacts of displacing mechanical or kraft pulp taking into considerations potential variations due to pulp production energy use, fuel input mix and recycling allocation methodology. These ranges represent the maximum and minimum relative impact results obtain among all of the sensitivity analysis scenarios evaluated and do not include potential cumulative effects (e.g., the relative impact of combining a higher total energy and different fuel mix). In addition, other variables, such as transportation distances, could also impact the result variability. The dark green cells represent the pulp that consistently has the lowest relative environmental impact for all of ranges of variables considered in the sensitivity analysis scenarios evaluated. If two the pulps can potentially have the lowest relative environmental impact depending on the scenario (i.e., the range of relative minimum impacts overlaps) then their cells are shaded light green. The dark blue cells represent the pulp that has the highest relative environmental impact for all of the sensitivity analysis scenarios evaluated If two of the pulps can potentially have the highest relative environmental impact depending on the input fuel scenario (i.e., the range of relative maximum impacts overlaps) maximum then their cells are shaded light blue. If a cell is not shaded (e.g., mechanical pulp wood use) then the relative impact for that pulp is neither the relative minimum nor maximum of the three pulp types evaluated.

|                                  | Recovered Pulp | Kraft Pulp | Mechanical Pulp |
|----------------------------------|----------------|------------|-----------------|
| Total CO2 eq (Fossil + Biogenic) | -0.19-0.33     | 0.39-1.53  | 0.37-0.57       |
| Fossil CO2 eq                    | 0.28-0.46      | 0.48-1.41  | 0.85-1.3        |
| Biogenic CO2 eq                  | -0.53-0.23     | 0.33-1.59  | 0.04-0.06       |
| Acidification                    | 0.23-0.42      | 0.71-1.26  | 0.77-1.18       |
| Carcinogens                      | 0.21-0.43      | 0.85-1.13  | 0.28-0.39       |
| Non Carcinogens                  | -0.04-0.48     | 0.5-1.44   | 0.32-0.47       |
| Respiratory effects              | 0.19-0.39      | 0.6-1.36   | 0.66-1.02       |
| Eutrophication                   | -1.98-0.36     | 0.85-1.06  | 0.67-0.86       |
| Ozone depletion                  | 0.17-0.44      | 0.6-1.35   | 0.55-0.79       |
| Ecotoxicity                      | 0.14-0.41      | 0.7-1.26   | 0.23-0.34       |
| Smog                             | 0.32-0.49      | 0.8-1.21   | 0.76-1.14       |
| Fossil Energy                    | 0.25-0.43      | 0.46-1.41  | 0.85-1.3        |
| Energy from Biomass              | 0.02-0.23      | 0.32-1.6   | 0.01-0.03       |
| Wood Use                         | 0-0.21         | 0.85-1     | 0.44-0.52       |
| Key                              |                |            |                 |

#### Table 17: Relative impact ranges for deinked, kraft and mechanical pulp

Pulp that consistently has the lowest relative environmental impact for each the scenarios evaluated

Pulps that can potentially have the lowest relative environmental impact depending on the scenario (i.e., the range of relative minimum impacts overlaps)

Pulp that consistently has the highest relative environmental impact for each of the scenarios evaluated

Pulps that can potentially have the highest relative environmental impact depending on the scenario (i.e., the range of relative maximum impacts overlaps)

Pulp whose impact is neither the relative minimum nor maximum of the three pulp types evaluated





Table 17 and Figure 20 shows that the results are highly variable depending on the input data and assumptions applied. Kraft pulp has consistently higher relative impacts for the following impact categories:

| Impact Category     | Significant Contributing Factors                                    |
|---------------------|---------------------------------------------------------------------|
| Biogenic CO2        | Large amount of biomass fuel generated and used onsite              |
| Carcinogens         | Chromium emissions associated with sodium chlorate production       |
| Non-Carcinogens     | Large amount of black liquor biomass fuel generated and used onsite |
| Ecotoxicity         | Arsenic water emissions associated with Kraft processes.            |
| Energy from Biomass | Large amount of biomass fuel generated and used onsite              |
| Wood Use            | Lower yield of wood used in kraft vs. mechanical pulping            |

If the impact categories listed above are considered priorities, displacing a higher percentage of kraft pulp would be environmentally preferable. Alternatively, either kraft or mechanical pulp can have a relatively higher impact for the following impact categories (shown in light blue in Table 17 and those with overlapping relative maximum impact results on Figure 20.):

| Impact<br>Category     | Significant Contributing Factors:<br>Kraft Pulp                                                                             | Significant Contributing Factors:<br>Mechanical Pulp           |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Fossil CO2 eq          | Large amount of purchased electricity and residual fuel oil used.                                                           | Large amount of purchased coal electricity used.               |
| Acidification          | NOx and SO <sub>2</sub> associated with kraft pulp mill emissions.                                                          | Large amount of purchased coal electricity used.               |
| Carcinogens            | Chromium VI process emissions associated with sodium chlorate.                                                              | Large amount of purchased coal electricity used.               |
| Respiratory<br>Effects | NOx and SO <sub>2</sub> associated with kraft pulp mill emissions and particulates associated with black liquor combustion. | Large amount of purchased coal electricity used.               |
| Eutrophication         | Phospate associated with Sodium Chlorate<br>and COD and Nitrogen associated with kraft<br>pulp process emissions.           | COD and BOD associated with mechanical pulp process emissions. |
| Ozone<br>Depletion     | Large amount if electricity use associated with sodium chlorate production and natural gas fuel used in kraft pulping.      | Large amount of purchased coal electricity used.               |

While this study did not specifically contrast use of pulp in alternative products, the results are useful for exploring this topic. For example, the sensitivity analysis shows that we cannot distinguish between impacts of alternative products produced from any combination of the mechanical or kraft pulp considered in this analysis. This is due to the overlap in potential impacts between pulps as illustrated in Table 17, which is caused by the range of mill specific characteristics. For the impact categories, displacing either mechanical or kraft pulp can be the environmentally preferable option, depending on specific pulp mill characteristics and assumptions. As illustrated above, the majority of the impacts are significantly influenced by the amount and type of energy used. Thus, for example, if a mechanical pulp mill uses a high total energy and higher percentage of purchased electricity it will have a relatively higher environmental impact and displacing that pulp instead of kraft may be the environmentally preferable option in that specific instance. In the reverse case, that is where there is a more energy intensive kraft mill, then displacing the pulp in a product that uses kraft would be the environmental choice instead of a product that uses mechanical. Furthermore, this study did not investigate potential differences in treatment for different grades of pulp as used in varied product applications. Therefore, results may differ if a subsequent study were to evaluate specific pulp grades. Such a study would need to evaluate both deinked and virgin pulp of that grade to determine the net impact of displacing virgin pulp with deinked. For example if unbleached pulp is used in a product, then a net impact study would consider the difference between using unbleached deinked pulp and unbleached virgin pulp. Finally, given that the range of mill specific characteristics challenges the ability to definitely state that displacing the bleached mechanical or kraft pulp in one product is beneficial over displacing some ratio in another product, another approach to the question could be to use mill-specific activity data to more precisely estimate the relative impacts of using a specific grade of deinked pulp to displace a specific grade of virgin pulp for use in alternative products.

# Appendix A

Basecase Impact Results Applying Impact 2002+ and ReCiPe Characterization Factors

| Impact category           | Unit         | Deinked Pulp | Mechanical Pulp | Kraft Pulp |
|---------------------------|--------------|--------------|-----------------|------------|
| Carcinogens               | kg C2H3Cl eq | 0.01         | 0.01            | 0.02       |
| Non-carcinogens           | kg C2H3Cl eq | 0.02         | 0.02            | 0.05       |
| Respiratory<br>inorganics | kg PM2.5 eq  | 4.8E-4       | 1.39E-3         | 1.53E-3    |
| Ozone layer<br>depletion  | kg CFC-11 eq | 9.86E-9      | 2.34E-8         | 3.29E-8    |
| Respiratory<br>organics   | kg C2H4 eq   | 2.44E-4      | 8.64E-4         | 6.28E-4    |
| Aquatic ecotoxicity       | kg TEG water | 47.61        | 39.85           | 1.01E+2    |
| Terrestrial ecotoxicity   | kg TEG soil  | 1.58         | 1.52            | 3.99       |
| Terrestrial<br>acid/nutri | kg SO2 eq    | 0.01         | 0.04            | 0.04       |
| Aquatic<br>acidification  | kg SO2 eq    | 4.01E-3      | 0.01            | 0.02       |
| Aquatic<br>eutrophication | kg PO4 P-lim | 7.8E-5       | 6.15E-4         | 6.87E-4    |
| Global warming            | kg CO2 eq    | 0.53         | 1.6             | 1.55       |
| Mineral extraction        | MJ surplus   | 9.91E-4      | 2.68E-3         | 1.02E-3    |

#### Comparing Deinked Pulp, Mechanical Pulp, and Kraft Pulp with IMPACT 2002+

#### Comparing Deinked Pulp, Mechanical Pulp, and Kraft Pulp with World ReCiPe H

|                                    |              | • •          | •               |            |
|------------------------------------|--------------|--------------|-----------------|------------|
| Impact category                    | Unit         | Deinked Pulp | Mechanical Pulp | Kraft Pulp |
| Climate change                     | kg CO2 eq    | 0.55         | 1.68            | 1.62       |
| Ozone depletion                    | kg CFC-11 eq | 9.9E-9       | 2.34E-8         | 3.29E-8    |
| Human toxicity                     | kg 1,4-DB eq | 0.15         | 0.26            | 0.87       |
| Photochemical<br>oxidant formation | kg NMVOC     | 2.53E-3      | 0.01            | 0.01       |
| Particulate matter<br>formation    | kg PM10 eq   | 1.04E-3      | 3.28E-3         | 4.05E-3    |
| Terrestrial acidification          | kg SO2 eq    | 3.69E-3      | 0.01            | 0.01       |
| Freshwater<br>eutrophication       | kg P eq      | 2.9E-5       | 5.32E-5         | 1.84E-4    |
| Marine<br>eutrophication           | kg N eq      | 2.55E-4      | 4.54E-4         | 7.57E-4    |
| Terrestrial ecotoxicity            | kg 1,4-DB eq | 8.62E-4      | 4.36E-5         | 1.74E-4    |
| Freshwater<br>ecotoxicity          | kg 1,4-DB eq | 2.48E-3      | 4.44E-3         | 0.01       |
| Marine ecotoxicity                 | kg 1,4-DB eq | 1.84E-3      | 3.13E-3         | 0.01       |
| Fossil depletion                   | kg oil eq    | 0.16         | 0.55            | 0.53       |
|                                    |              |              |                 |            |

# Appendix B

Life Cycle Inventory Unit Process Sources

| Life Cycle<br>Process # | Life Cycle Process                                                   | Unit Process(es)                                                                                  | Database  |
|-------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------|
| 2Ra                     | Waste Paper<br>Collection via<br>Municipal Waste<br>Collection Truck | Transport, combination truck, average fuel mix NREL /US                                           | U.S. LCI  |
| 2Rb                     | Transport to Sorting<br>Plant via Truck                              | Transport, single unit truck, diesel powered NREL /US                                             | U.S. LCI  |
| 3R                      | Waste Paper Sorting                                                  | Electricity, at grid, US/US                                                                       | U.S. LCI  |
|                         | Process                                                              | Light fuel oil, burned in boiler 100kW, non-<br>modulating/CH WITH US ELECTRICITY U               | Ecoinvent |
|                         |                                                                      | Steel, converter, unalloyed, at plant/RER WITH US ELECTRICITY U                                   | Ecoinvent |
|                         |                                                                      | Sheet rolling, steel/RER WITH US ELECTRICITY U                                                    | Ecoinvent |
|                         |                                                                      | Lubricating oil, at plant/RER WITH US ELECTRICITY U                                               | Ecoinvent |
|                         |                                                                      | Waste paper sorting plant/RER/I WITH US<br>ELECTRICITY U                                          | Ecoinvent |
|                         |                                                                      | Disposal, plastics, mixture, 15.3% water, to municipal incineration/CH WITH US ELECTRICITY U      | Ecoinvent |
|                         |                                                                      | Disposal, paper, 11.2% water, to municipal<br>incineration/CH WITH US ELECTRICITY U               | Ecoinvent |
|                         |                                                                      | Disposal, packaging cardboard, 19.6% water, to<br>municipal incineration/CH WITH US ELECTRICITY U | Ecoinvent |
|                         |                                                                      | Disposal, textiles, soiled, 25% water, to municipal incineration/CH WITH US ELECTRICITY U         | Ecoinvent |
|                         |                                                                      | Disposal, wood untreated, 20% water, to municipal incineration/CH WITH US ELECTRICITY U           | Ecoinvent |
|                         |                                                                      | Disposal, steel, 0% water, to municipal incineration/CH<br>WITH US ELECTRICITY U                  | Ecoinvent |

#### Deinked Pulp Raw Materials Extraction and Preprocessing Unit Process Sources

#### **Recovered Pulp Manufacturing Unit Process Sources**

| Life Cycle<br>Process # | Life Cycle Process                                              | Unit Process(es)                                                     | Database  |
|-------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|-----------|
| 4R                      | Waste paper collection via                                      | Transport, combination truck, average fuel mix NREL /US              | U.S. LCI  |
|                         | municipal waste                                                 | Transport, train, diesel powered NREL /US                            | U.S. LCI  |
|                         | collection truck and<br>transport to sorting<br>plant via truck | Transport, single unit truck, diesel powered NREL /US                | U.S. LCI  |
| 5R                      | Deinked Pulp<br>Production                                      | Hydrogen peroxide, 50% in H2O, at plant/RER WITH US ELECTRICITY U    | Ecoinvent |
|                         |                                                                 | Sodium hydroxide, production mix, at plant/kg NREL /RNA              | U.S.LCI   |
|                         |                                                                 | Sodium chloride, at plant NREL /RNA                                  | U.S.LCI   |
|                         |                                                                 | Sodium dithionite, anhydrous, at plant/RER WITH US ELECTRICITY U     | Ecoinvent |
|                         |                                                                 | Fatty acids, from vegetarian oil, at plant/RER WITH US ELECTRICITY U | Ecoinvent |
|                         |                                                                 | Electricity, at grid, US NREL /US                                    | U.S.LCI   |
|                         |                                                                 | Energy- Residual fuel oil, combusted in industrial boiler NREL /US   | U.S.LCI   |
|                         |                                                                 | Energy- Natural gas, combusted in industrial boiler                  | U.S.LCI   |

| Life Cycle<br>Process # | Life Cycle Process | Unit Process(es)                                                                                     | Database  |
|-------------------------|--------------------|------------------------------------------------------------------------------------------------------|-----------|
|                         |                    | NREL /US                                                                                             |           |
|                         |                    | Energy- Bituminous coal, combusted in industrial boiler NREL /US                                     | U.S.LCI   |
|                         |                    | Pulp plant/RER/I WITH US ELECTRICITY U                                                               | Ecoinvent |
|                         |                    | Disposal, municipal solid waste, 22.9% water, to<br>sanitary landfill/CH WITH US ELECTRICITY U       | Ecoinvent |
|                         |                    | Disposal, ash from deinking sludge, 0% water, to residual material landfill/CH WITH US ELECTRICITY U | Ecoinvent |

#### Deinked Pulp Transportation Unit Process Sources

| Life Cycle<br>Process # | Life Cycle Process                   | Unit Process(es)                                        | Database |
|-------------------------|--------------------------------------|---------------------------------------------------------|----------|
| 6R                      | Transport to Paper<br>Mill via Truck | Transport, combination truck, average fuel mix NREL /US | U.S. LCI |

### Virgin Pulp Raw Materials Extraction and Preprocessing Unit Process Sources

| Life Cycle<br>Process # | Life Cycle Process                | Unit Process(es)                                                  | Database |
|-------------------------|-----------------------------------|-------------------------------------------------------------------|----------|
| 2V/4V                   | Wood Extraction/<br>Sawmill       | WOOD- Softwood logs with bark, avg, PNW & SE                      | U.S. LCI |
|                         |                                   | WOOD@mill_Roundwood, hardwood, average, at forest road, NE-NC/RNA | U.S. LCI |
|                         |                                   | WOOD- Softwood-Pulp Chips, SE & PNW                               | U.S. LCI |
|                         |                                   | WOOD_Wood chips, hardwood, green, at sawmill, NE-NC/kg/RNA        | U.S.LCI  |
| 3V                      | Transport of logs to the sawmill  | Transport, combination truck, average fuel mix NREL /US           | U.S.LCI  |
| 5V                      | Transport of logs to the pulpmill | Transport, combination truck, average fuel mix NREL /US           | U.S.LCI  |

#### Kraft Pulp Manufacturing Unit Process Sources

| Life Cycle<br>Process # | Life Cycle Process | Unit Process(es)                                                                             | Database  |
|-------------------------|--------------------|----------------------------------------------------------------------------------------------|-----------|
| 6V1                     | Kraft Pulp         | Electricity, at grid, US NREL /US                                                            | U.S. LCI  |
| Production              |                    | KRAFT-Energy- Bituminous coal, combusted in<br>industrial boiler NREL /US                    | U.S. LCI  |
|                         |                    | KRAFT- Energy- Residual fuel oil, combusted in<br>industrial boiler NREL /US                 | U.S. LCI  |
|                         |                    | KRAFT- Energy- Natural gas, combusted in industrial boiler NREL /US                          | U.S. LCI  |
|                         |                    | KRAFT- Energy-Black Liquor- Wood waste, unspecified, combusted in industrial boiler NREL /US | U.S. LCI  |
|                         |                    | Hydrogen peroxide, 50% in H2O, at plant/RER WITH US ELECTRICITY U                            | Ecoinvent |
|                         |                    | Sodium hydroxide, production mix, at plant/kg NREL /RNA                                      | U.S. LCI  |
|                         |                    | Sodium chlorate, powder, at plant/RER WITH US ELECTRICITY U                                  | Ecoinvent |
|                         |                    | Sulphuric acid, liquid, at plant/RER WITH US<br>ELECTRICITY U                                | Ecoinvent |
|                         |                    | Malusil, at plant/RER WITH US ELECTRICITY U                                                  | Ecoinvent |

| Life Cycle<br>Process # | Life Cycle Process                                                                         | Unit Process(es)                                                                                | Database  |
|-------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------|
|                         |                                                                                            | Disposal, hazardous waste, 0% water, to underground<br>deposit/DE WITH US ELECTRICITY U         | Ecoinvent |
|                         |                                                                                            | Disposal, municipal solid waste, 22.9% water, to sanitary landfill/CH WITH US ELECTRICITY U     | Ecoinvent |
|                         |                                                                                            | Disposal, wood ash mixture, pure, 0% water, to sanitary landfill/CH WITH US ELECTRICITY U       | Ecoinvent |
|                         |                                                                                            | Disposal, green liquor dregs, 25% water, to residual material landfill/CH WITH US ELECTRICITY U | Ecoinvent |
|                         | Disposal, limestone residue, 5% water, to inert material landfill/CH WITH US ELECTRICITY U | Ecoinvent                                                                                       |           |

#### Mechanical Pulp Manufacturing Unit Process Sources

| Life Cycle                        | Life Cycle Process            | Unit Process(es)                                                                             | Database  |
|-----------------------------------|-------------------------------|----------------------------------------------------------------------------------------------|-----------|
| Process #                         |                               |                                                                                              | _         |
| 6V2 Mechanical Pulp<br>Production | Mechanical Pulp<br>Production | Electricity, at grid, US NREL /US                                                            | U.S. LCI  |
|                                   |                               | Energy- Bituminous coal, combusted in industrial boiler NREL /US                             | U.S. LCI  |
|                                   |                               | Energy-Wood waste, unspecified, combusted in<br>industrial boiler NREL /US                   | U.S. LCI  |
|                                   |                               | Energy- Residual fuel oil, combusted in industrial boiler NREL /US                           | U.S. LCI  |
|                                   |                               | Hydrogen peroxide, 50% in H2O, at plant/RER WITH US ELECTRICITY U                            | Ecoinvent |
|                                   |                               | Sodium silicate, spray powder 80%, at plant/RER WITH US ELECTRICITY U                        | Ecoinvent |
|                                   |                               | EDTA, ethylenediaminetetraacetic acid, at plant/RER<br>WITH US ELECTRICITY U                 | Ecoinvent |
|                                   |                               | Pulp plant/RER/I WITH US ELECTRICITY U                                                       | Ecoinvent |
|                                   |                               | Disposal, municipal solid waste, 22.9% water, to sanitary landfill/CH WITH US ELECTRICITY U  | Ecoinvent |
|                                   |                               | Disposal, wood ash mixture, pure, 0% water, to sanitary landfill/CH WITH US ELECTRICITY U    | Ecoinvent |
|                                   |                               | Disposal, paper, 11.2% water, to municipal<br>incineration/CH WITH US ELECTRICITY U          | Ecoinvent |
|                                   |                               | Disposal, plastics, mixture, 15.3% water, to municipal incineration/CH WITH US ELECTRICITY U | Ecoinvent |
|                                   |                               | Disposal, steel, 0% water, to municipal incineration/CH WITH US ELECTRICITY U                | Ecoinvent |
|                                   |                               | Disposal, textiles, soiled, 25% water, to municipal incineration/CH WITH US ELECTRICITY U    | Ecoinvent |
|                                   |                               | Disposal, wood untreated, 20% water, to municipal incineration/CH WITH US ELECTRICITY U      | Ecoinvent |

#### Virgin Pulp Transportation Unit Process Sources

| Life Cycle<br>Process # | Life Cycle Process                   | Unit Process(es)                                        | Database |
|-------------------------|--------------------------------------|---------------------------------------------------------|----------|
| 7V                      | Transport to Paper Mill<br>via Truck | Transport, combination truck, average fuel mix NREL /US | U.S. LCI |